1. Assessment exercises

Exercise 1. — Show that

$$\overline{\chi}(n)n^{-s} = \frac{(-2\pi i)^s}{\Gamma(s)G(\chi)} \sum_{a \in (\mathbb{Z}/D\mathbb{Z})^{\times}} \chi(a) \int_{a/D}^{\infty} e^{2\pi i n z} \left(z - \frac{a}{D}\right)^{s-1} dz.$$

Deduce that for $Re(s) \gg 0$, we have

$$L(f,\overline{\chi},s) = \frac{(-2\pi i)^s}{\Gamma(s)G(\chi)} \sum_{a \in (\mathbb{Z}/D\mathbb{Z})^\times} \chi(a) \int_{a/D}^\infty f(z) \left(z - \frac{a}{D}\right)^{s-1} dz.$$

Exercise 2. — Let μ be a locally analytic distribution on \mathbb{Z}_p with growth of order 0. Show that μ is a measure.

Exercise 3. — (1) Show that Γ acts on $\mathbb{A}[r]$ by isometries, that is, that

$$||\gamma \cdot f||_r = ||f||_r.$$

for all $\gamma \in \Gamma$ and $f \in \mathbb{A}[r]$.

(2) Deduce that the function

$$||\cdot||_r : \operatorname{Symb}_{\Gamma}(\mathcal{D}_k(L)) \longrightarrow L$$

$$\Phi \longmapsto \sup_{D \in \Delta_0} |\Phi(D)|_r$$

gives a well-defined norm on $\operatorname{Symb}_{\Gamma}(\mathcal{D}_k(L))$.

(3) Let $\Phi \in \operatorname{Symb}_{\Gamma}(\mathcal{D}_k(L))$ satisfy $U_p\Phi = \alpha_p\phi$. Show that for every $D \in \Delta_0$, the distribution $\Phi(D)$ has growth of order $h := v_p(\alpha_p)$.

Exercise 4. — Let $f \in S_{k+2}(\Gamma, \mathbb{C})$ be a cuspidal eigenform with $U_p f = \alpha_p f$. Show that for $0 \le j \le k$, we have

$$\begin{split} L_p(f,j+1) &:= \int_{\mathbb{Z}_p^\times} z^j \cdot L_p(f) \\ &= \left(1 - \frac{p^j}{\alpha_p}\right) \int_{\mathbb{Z}_p} z^j \cdot L_p(f), \end{split}$$

where $(-1)^{j} = \pm 1$.

Deduce that if f is the modular form attached to an elliptic curve E with split multiplicative reduction at p, then

$$L_p(E,1) := L_p(f,1) = 0,$$

independent of the value of L(f,1) = L(E,1).

Remark: This vanishing is known as the 'exceptional/trivial zero phenomenon', where the p-adic L-function has a zero arising from its interpolation property. The Exceptional zero conjecture of Mazur-Tate-Teitelbaum (Inventiones, 1986), later proved by Greenberg-Stevens (Inventiones, 1993), says that in this case the derivative of $L_p(f)$ at 1 should be equal to

$$-\mathcal{L}_f \cdot \frac{1}{2\pi i} \cdot \frac{L(f,1)}{\Omega_f^{\pm}}$$

where \mathcal{L}_f is an arithmetic \mathcal{L} -invariant of f. This \mathcal{L} -invariant carries deep information about the Galois representation of f, arising in semi-stable p-adic Hodge theory.

1

2. Additional exercises

Exercise 5. — Define the Atkin-Lehner operator W_N on $S_k(\Gamma_0(N))$ by

$$W_N f = i^k N^{1 - \frac{k}{2}} f \big|_k \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}.$$

(1) Show that W_N is an involution, and thus induces a decomposition $S_k = S_k^+ \oplus S_k^-$.

Suppose now that $f \in S_k(\Gamma_0(N))$ is an eigenform. At level Γ_0 , the involution W_N commutes with the Hecke operators, and thus $W_N f = \omega f$ for some $\omega \in \{\pm 1\}$.

(2) Prove that

$$\int_{0}^{1} f\left(\frac{it}{\sqrt{N}}\right) t^{s} \frac{dt}{t} = \int_{1}^{\infty} (W_{N} f) \left(\frac{it}{\sqrt{N}}\right) t^{k-s} \frac{dt}{t}.$$

- (3) Deduce that:
 - the integral defining L(f, s) converges absolutely, and hence that L(f, s) has analytic continuation to the whole complex plane;
 - if $\Lambda(s) = \frac{N^{s/2}\Gamma(s)}{(2\pi)^s} \cdot L(f,s)$, then we have the functional equation

$$\Lambda(s) = \omega \Lambda(k - s).$$

Exercise 6. — Let $f \in S_k(\Gamma_0(N), \mathbb{C})$ be a newform, with $p \nmid N$. Consider the forms $f(z), f(pz) \in S_k(\Gamma_0(Np), \mathbb{C})$. Show that the characteristic polynomial of U_p acting on this space is

$$X^2 - a_p(f)X + p^{k-1}.$$

Deduce that the eigenvalues of U_p on $S_k^{p-\mathrm{old}}(\Gamma_0(Np),\mathbb{C})$ all have p-adic valuation $\leq k-1$.

Exercise 7. — Recall the map $\operatorname{Ev}_{\chi,j}:\operatorname{Symb}_{\Gamma}(V_k(\mathbb{C}))\longrightarrow \mathbb{C}$ from the lecture notes. Prove that

$$\operatorname{Ev}_{\chi,j}(\phi_f) = \binom{k}{j} D^j \cdot \frac{G(\chi) \cdot j!}{(-2\pi i)^{j+1}} \cdot L(f, \overline{\chi}, j+1).$$

Exercise 8. — Prove that $\mathbb{Z}_p[[T]] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \neq \mathbb{Q}_p[[T]]$.

Exercise 9. — Let $\mathbb{A}(\mathbb{Z}_p, \mathcal{O}_L)$ be the space of rigid analytic functions $\mathbb{Z}_p \to \mathcal{O}_L$. Show that $\mathbb{D}(\mathbb{Z}_p, \mathcal{O}_L) \cong \mathrm{Hom}_{\mathrm{cts}}(\mathbb{A}(\mathbb{Z}_p, \mathcal{O}_L), \mathcal{O}_L)$.

Show that $\mathcal{M}(\mathbb{Z}_p, \mathcal{O}_L) \subset \mathbb{D}(\mathbb{Z}_p, \mathcal{O}_L)$.

Exercise 10. — Let μ be a rigid analytic distribution on \mathbb{Z}_p . Show that μ is locally analytic if and only if its Amice transform $\mathcal{A}_{\mu}(T)$ converges on the open unit disc in \mathbb{C}_p .