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Abstract

In this paper, we propose and explore a new connection in the study of p-adic L-functions
and eigenvarieties. We use it to prove results on the geometry of the cuspidal eigenvariety
for GL2, over a totally real number field F' at classical points admitting Shalika models.
We also construct p-adic L-functions over the eigenvariety around these points. Our proofs
proceed in the opposite direction to established methods: rather than using the geometry
of eigenvarieties to deduce results about p-adic L-functions, we instead show that non-
vanishing of a (standard) p-adic L-function implies smoothness of the eigenvariety at such
points. Key to our methods are a family of distribution-valued functionals on (parahoric)
overconvergent cohomology groups, which we construct via p-adic interpolation of classical
representation-theoretic branching laws for GL,, x GL,, C GLa,.

More precisely, we use our functionals to attach a p-adic L-function to a non-critical
refinement 7 of a regular algebraic cuspidal automorphic representation m of GLa,, /F which
is spherical at p and admits a Shalika model. Our new parahoric distribution coefficients
allow us to obtain optimal non-critical slope and growth bounds for this construction. When
7 has regular weight and the corresponding p-adic Galois representation is irreducible, we
exploit non-vanishing of our functionals to show that the parabolic eigenvariety for GLa, /F
is étale at 7 over an ([F : Q] + 1)-dimensional weight space and contains a dense set of
classical points admitting Shalika models. Under a hypothesis on the local Shalika models
at bad places which is empty for 7 of level 1, we construct a p-adic L-function for the family.
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1. Introduction

The arithmetic of L-functions has long been a topic of intense interest in number theory. Via the
Bloch—Kato Conjecture, the special values of L-functions are expected to carry deep algebraic
data. Most recent progress towards this conjecture has come through p-adic methods — more
precisely, through understanding all of (a) p-adic L-functions, (b) classical p-adic families, and
(c¢) p-adic L-functions over classical p-adic families. Where one has all three, they have been
crucial in proofs of Iwasawa Main Conjectures and cases of the Bloch—Kato Conjecture. It is
therefore natural to ask whether one can obtain (a), (b) and (c) for any regular algebraic cuspidal
automorphic representation (RACAR) of a reductive group G.
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For (a), at least, this is expected to be possible in great generality, thanks to conjectures of
Coates—Perrin-Riou and Panchishkin [36, 35, 66]. However, our understanding of fundamental
cases — for example, GLy for N > 2 — remains poor, with relatively few constructions of p-adic
L-functions in this case, most of which assume a p-ordinarity condition.

The theory of p-adic families is more subtle still. Singularly, (b) can fail when moving beyond
GLo; there exist RACARs of GLy that are ‘arithmetically rigid’, not varying in any classical
p-adic family (that is, a positive-dimensional subspace of an eigenvariety containing a Zariski-
dense set of classical points; see e.g. [8]). This contrasts sharply with the cases of, for example,
Hilbert or Siegel modular forms, where it is expected all RACARs can be classically varied.

To approach (c), one needs not only the existence of a classical family, but also a precise
description of its geometry. For example, one needs to know whether such a family is smooth
or étale over the weight space. Well-established methods for studying eigenvarieties break down
for GLy with N > 2, owing to RACARs contributing to multiple degrees of cohomology and
the underlying locally symmetric spaces not admitting any algebraic structure. The geometry of
the GLy eigenvariety is thus largely mysterious, meaning there are few instances in this setting
where (c) is approachable at present.

In this paper, we prove new cases of (a), (b) and (c) for regular algebraic symplectic-type
cuspidal automorphic representations (RASCARs) 7 of GLy over a totally real number field F,
described below in Theorems A, B and C respectively.

The technical heart of our approach is a construction of ‘evaluation maps’, a p-adic integration
theory on overconvergent modular symbols for GLy. The special values of these maps compute
explicit multiples of classical complex L-values of RASCARs. Such maps are very familiar in
the setting of GLy, where they have been used in many papers to study p-adic L-functions (see
§1.2.1), but they had not previously been constructed for any higher-dimensional GLy. The GLo
constructions do not easily generalise; the relative simplicity of the GLy setting hides substantial
representation-theoretic obstructions that arise in higher dimension (see §1.2.2). A key new
input in our constructions is a p-adic interpolation, in both cyclotomic and weight directions, of
higher-dimensional branching laws in representation theory. This occupies §5 and §6.

Once constructed, evaluation maps have powerful consequences. Their utility in constructing
p-adic L-functions is already well-documented in the GLo case, and similarly we use them to
construct p-adic L-functions for RASCARs of GLy. However, we also push their use further
than previous works. One particularly striking consequence is the following strong version of (b)
in this setting, made precise in Theorem B (and Theorem 7.6):

Let m be a RASCAR with regular weight and irreducible Galois representation. Then
() the parabolic GLy -eigenvariety is étale over the pure weight space at certain non-
critical p-refinements 7 of w. Hence T varies in a unique classical p-adic family.

Our proof of this result turns traditional methods upside down. There is a long and storied
history of applying the geometry of eigenvarieties to construct and study p-adic L-functions; for
example, this is the central tenet of Bellaiche’s celebrated paper on critical p-adic L-functions
[20]. There are also some works connecting the étaleness of an eigenvariety to the non-vanishing
of an adjoint p-adic L-function (e.g. [21, §VIII], [10], [57]), but similarly all of these works require
prior knowledge about existence and properties of p-adic families to study the p-adic L-function.

Our methods add to this rich story. However, they differ considerably in that unlike all
previous works, we proceed in the opposite direction. We first construct p-adic L-functions and
then we use them to construct p-adic families. Indeed, we use our evaluation maps to show that
non-vanishing of the p-adic L-function of © — guaranteed by regular weight — implies faithfulness
of a Hecke algebra as a module over weight space, thus producing dimension in the eigenvariety
and implying the existence of classical families. In addition, rather than using the adjoint p-adic
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L-function, to our knowledge we give the first instance where non-vanishing of a standard p-adic
L-function is used to control the geometry of an eigenvariety.

The methods we develop in this paper have more general applications. In particular, the
proof of () — which occupies all of §7 — shows that evaluation maps, through interpolation
of branching laws, can be a powerful tool in understanding the geometry of classical p-adic
families. We have explored this further in sequel papers [13, 14]. More generally, our methods
suggest the natural setting to consider evaluation maps is that of spherical varieties, giving
strong connections between the geometry of eigenvarieties and automorphic period integrals in
the Gan-Gross—Prasad conjectures (see e.g. [87, 67, 88]), as well as to p-adic interpolation in
Sakellaridis—Venkatesh’s relative Langlands program [72]. We will use the methods of this paper
to construct and study p-adic interpolations of such period integrals in future work.

We expect there to be further arithmetic applications of our evaluation maps. In the GL,
setting, beyond their applications to p-adic L-functions, analogues of these maps have further
been used to study periods and congruences between base-change and non-base-change Bianchi
modular forms [49, 79], study L-invariants and trivial zero conjectures [15, 11], construct Stark—
Heegner cycles predicted by the Bloch-Kato conjecture [84, 83|, and prove generalisations of Hida
duality [24]. Few of these results/constructions have been carried out for higher-dimensional
GLy, by any method. We anticipate similar applications of evaluation maps are possible for
RASCARs, and again hope to return to this in subsequent work.

Finally, we mention applications of our results themselves, which — as explained above —
should ultimately have applications towards the Bloch—Kato and Iwasawa Main Conjectures.
They have already led to research in this direction for GLa, [70, 58]. There are more immediate
applications to other groups such as GSp,. In a sequel [13] to this paper, we have crucially used
the methods developed here to prove a result on the variation of p-adic L-functions required in
[60]. This result — which was announced as Theorem 17.6.2 4bid., where it was deferred to future
work of the present authors — was used by Loeffler and Zerbes to prove cases of the Bloch-Kato
Conjecture for GSp, [60] and for symmetric cubes of modular forms [61].

1.1. Set-up and previous work. Fix forever an isomorphism i, : C == Qp.

We say a regular algebraic cuspidal automorphic representation (RACAR) 7 of GLy(AF) is
essentially self-dual if 7V = m ® n~! for a Hecke character n, which we henceforth fix. Such a 7
is either n-orthogonal or n-symplectic, depending respectively on whether the twisted symmetric
square L-function L(Sym?r x 71, s) or the twisted exterior square L-function L(A> 7 x n~1, s)
has a pole at s = 1 (see [62, 75], summarised in detail in [50, Lem. 2.1]). Assuming the p-adic
Galois representation p, attached to an essentially self-dual RACAR = is (absolutely) irreducible,
the unique (up to scalar) non-degenerate n-equivariant bilinear form on p, is either symmetric
or skew-symmetric, and it is conjectured that 7 should be n-orthogonal in the former case and
n-symplectic in latter. Our focus is on the n-symplectic case. By [4], 7 is n-symplectic if and
only if N = 2n is even and either (so both) of the following hold:

(i) m admits an (), ¢)-Shalika model (see §2.6);

(ii) 7 is the transfer of a globally generic cuspidal automorphic representation IT of GSpin,,, , ; (AF)
with central character 7.

Henceforth we will mainly use (i) and call such a representation m a RASCAR.

Let G = Resp,, /7 GLa,. Let ¥ be the set of real embeddings of F, and let A = (As)sex be a
Borel-dominant weight for G, i.e. A\ = (Ag1,- -+, Ag.2n) € Z2" with Ay 1 = -+ > A\y2,. Let 7 be
a RASCAR of G(A) of weight A; our convention is that 7 is cohomological with respect to the
coefficient system V), where V) is the algebraic representation of highest weight A. Let

Crit(A) :={j €Z: —Xon <J < —Apnt1 Vo € X} (1.1)
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Then j € Crit()) if and only if L(m,j + %) is a Deligne-critical value; and Grobner—-Raghuram
showed in [45] that these L-values, and their twists by finite order Hecke characters, are algebraic
multiples of a finite set of complex periods.

Let p be a prime such that 7, is spherical for each p|p (or more generally, each 7, satisfies
(C2) of Conditions 2.8). A p-adic L-function for 7 is a p-adic distribution of controlled growth
that interpolates the algebraic parts of Deligne-critical L-values. For such p-adic interpolation it
is essential to take a p-refinement 7 of 7, i.e. to work at non-maximal level at p (e.g. for GLo, this
is the process of passing from a newform of level I'; (M) to an eigenform of level I'y (M) NTo(p)).
A standard approach is to refine to Iwahori level at p|p, which in our case corresponds to choosing
a full triangulation of the 2n-dimensional local Galois representation. However, the Panchishkin
condition (see [59, §2.1], inspired by [66]) predicts that the p-adic L-function should not depend
on a full triangulation, but only on a suitable n-dimensional stable submodule. This suggests
that the natural level to take at p|p is not Iwahoric, but the parahoric subgroup J, relative to
the parabolic subgroup @ of G with Levi

H = Resp,, ;z(GL, x GLy).

In this paper, we indeed show that parahoric level is optimal for this construction (see §1.2.3).

Let O, be the ring of integers in the completion F}, of F' at p, and fix a uniformiser @y in O.
Of central importance is the Hecke operator U, = [Jp (wp In In) Jp} and its optimal integral
normalisation Uy (see §3.3). A Q-refinement of m, is a choice of (non-zero) eigenvalue o, of Uy,
acting on ijp, and a Q-refinement of 7 is a choice © = (7, (ap)pp) of Q-refinement of 7, for each
p|p. Following [38, Definition 3.5], we say the Q-refinement 7 is Shalike if each « is a simple
eigenvalue that interacts well with the Shalika model in a precise sense (see §2.7).

The following p-adic reformulation of [45] performed in [38] will be crucial for us. For an open
compact subgroup K = [[, K, C G(Ay) that is parahoric at p (that is, with K, = J, at each
p|p), let Sk be the associated locally symmetric space for G (see (2.3)). Consider the compactly
supported cohomology groups H.(Sk, #,Y(Q,)) in degree t = d(n® + n — 1), where ¥, is the
(p-adic) algebraic local system attached to VY. Then [38] proved that

(a) there exists a family of p-adic classical evaluation maps
EVX»j : HE(SK7 /%\V(Qp)) — Qp?

indexed by finite order Hecke characters x of p-power conductor and j € Crit(\), and

(b) for a sufficiently small but inexplicit level K = K(7) (see (2.23)), attached to 7 and 4, there
exists a classical eigenclass

¢z € H (Sk(7), 72 (Q,))

whose image Ev, ;(¢#) equals i, (L(m ® x,j + 3)/Q5%) up to a non-zero factor, where €
is a complex period, depending only on 7 and the multi-sign € = (=1)7 - (x1)so € {£1}>
(recalling 7 is n-symplectic).

In Theorem 5.22; based on [54], we improve this by making the factor completely explicit.

In [38], when further 7 is Q-ordinary — that is, when the integral normalisation ap of ay is
a p-adic unit — the authors constructed the corresponding p-adic L-function £,(7) by proving
directly the so-called Manin relations.

1.2. Main results and methods. In this section, we state our three main results precisely
(in Theorems A, B and C). All three are proved using overconvergent cohomology.
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Figure 1: Strategy of our constructions

1.2.1. Owverconvergent cohomology and families beyond GLo. The utility of overconvergent co-
homology in constructing p-adic L-functions and p-adic families is very familiar. For example,

(1) it was the central method used in the papers [43, 68, 69, 20, 12, 86, 16, 11, 23, 17, 18, 56],
including several by the present authors, to construct and study p-adic L-functions attached
to modular forms on GL, (in various settings, ranging from ordinary modular forms over Q
to finite slope families over general number fields);

(2) for a general quasi-split group G, it was used in [9, 81, 46, 19] to construct eigenvarieties
(and hence p-adic families of overconvergent systems of eigenvalues).

Despite the huge generality for which overconvergent cohomology has been developed in (2),
none of the program in (1) has been generalised from GLy to higher GLy. From the papers
above the strategy for carrying out such a generalisation is clear; it is summarised in Figure 1
below. The results of [45, 38] comprise the bottom row (B). However, fundamental obstacles and
new features arise when trying to implement this strategy to construct the middle and top row
beyond GLj. For example, we have already commented that the theory of p-adic families (and
hence row (T)) is not well-understood. Additionally, unlike for GLy there is subtlety over the
level at p (Iwahoric vs. parahoric) at which one works; we describe this in detail in §1.2.3 below.

Before any of this, however, one must first construct (horizontal) evaluation maps in Figure 1.
In row (B), where there is no p-adic variation, the evaluation maps Ev, ; depend on a separate
choice of classical representation-theoretic branching law for each j € Crit(A\). For GLg, the
classical coefficients V are just spaces of polynomial functions on Op ®z Z,. This simplicity
yields obvious canonical choices of branching laws, which are readily p-adically interpolated,
making the construction of rows (M) and (T) straightforward.

For higher GL, the coefficient modules are hard to describe explicitly. Choices of branching
laws are no longer canonical, and must be carefully aligned for p-adic interpolation to even be
possible. A key technical result of [38] was Theorem 2.4.1, where Januszewski, Raghuram and one
of us carried out such an alignment, using finite-dimensional coefficient modules, for fixed A and
j varying in a finite set. However, their method does not generalise to our infinite-dimensional
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distribution coefficients. In this paper, we develop a new way of aligning branching laws, sketched
in §1.2.2 below, and use it to construct Evy in our setting. We also explain how to further align
these branching laws as A varies in a family €2, and use this to construct Evg.

1.2.2. p-adic L-functions for finite slope RASCARs. Our first main result is the construction
of a p-adic L-function attached to a finite slope RASCAR of GLs,. More precisely, as predicted
by Panchishkin [66] we construct a p-adic distribution on Gal,, the Galois group of the maximal
abelian extension of F' unramified outside poo, satisfying growth and interpolation properties.

Overconvergent cohomology groups are defined by replacing the algebraic coefficients V'
with spaces of p-adic distributions Dy and Dg, where  is a (rigid analytic) family in which the
weight A varies. To work at @Q-parahoric level, as mentioned above (see also §1.2.3 below), we
use a new class of parahoric distributions from our companion paper [19], described here in §3.
These spaces are constructed as a ‘double induction’: first we take an algebraic induction of A to
H, and then a locally analytic induction to the parahoric J, C G(Q,). These distributions are
analytic along the unipotent radical of @, but algebraic along all other variables (unlike Iwahoric
distributions, which are analytic in all variables).

At any fixed A, the space Dy admits V¥ as a quotient, inducing a specialisation map

ra s HE(Sk(a), Z0) = H2(Sk(m), 2)-

We say the refinement 7 = (7, {ap}y|p} is non-Q-critical if ry becomes an isomorphism after
restricting to the generalised Hecke eigenspaces at 7 (see Definition 3.14); this guaranteed by
having non-Q-critical slope at p (Theorem 3.16). For non-Q-critical 7, lifting ¢z under the
isomorphism 7y, we obtain a class ®z € H.(Sk(z), Zh)-

We now come to our major new input: the construction of a family of evaluation maps on
overconvergent cohomology groups, comprising the horizontal maps in Figure 1 and occupying
all of §4-§6. More precisely, we construct a map

Ev) : HZ(SK(;‘.),DA)[U; — a; : p|p] — D(Galp,Qp)

on the {Uy = aj },, eigenspace, valued in a space D(Galp,ép) of locally analytic distributions,
which interpolates all of the Ev, ; simultaneously as x and j vary. We note that D(Gal,, Q,) is
the space which Panchishkin predicts should contain the p-adic L-function of 7.

The existence of the map Ev) is a ‘p-adic interpolation of branching laws’ for H C G that
gives, for free, all of the classical Manin relations (as computed in [38]). More precisely, for
J1,72 € Z, let V(J;Il J2) denote the H-representation det{1 detjf, the algebraic representation of
highest weight (j1, ..., j1,72, .-, J2)oex- Let w € Z be the purity weight of A\ (see §2.2). Then we
have the following reinterpretation of the Deligne-critical L-values (1.1):

Branching law: j € Crit(\) < V(If] wtj) © Valy with multiplicity one.

lu

For each fixed j € Crit(\), the map Ev, ; depends on a (non-canonical) choice of basis vector
vj € ‘/(Ifj,w+j) C Vilg. To construct Evy these must be carefully aligned. We do this in §5
by reinterpreting the module V) as a double algebraic induction, collapsing all choices onto a
single choice of branching law for Resp,q GL, diagonally embedded inside H. In the process,
we obtain an explicit description of the branching law for H C G.

In §6, we use our parahoric distributions to construct the required p-adic interpolation of
the above branching laws in the cyclotomic direction. The parahoric setting allows us to isolate
(in the first induction) the algebraic branching law for Resy/q GL,, fixed above, whilst allowing
the second induction to vary p-adic analytically. Essential for this interpolation is a family of
support conditions for evaluation maps, arising from a choice of open orbit representative & for
the spherical variety G/H. This is a representation-theoretic avatar of the familiar phenomenon
in constructing p-adic L-functions, whereby one must modify the Euler factor at p.
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Definition 1.1. Let m be a RASCAR of G(A) spherical at p. Suppose m admits a non-Q-
critical, Shalika Q-refinement 7 = (7, (ap)pp), and let @z be the resulting overconvergent lift of
¢z, which is a Ug-eigenclass for all p[p. Define the p-adic L-function of & to be

Ly, (%) == EvA(®z) € D(Galp, Q).
This depends on ¢z, hence (by (2.22)) on the restriction of i, to the number field E; but this is
an expected indeterminacy (corresponding to [35, (14)]) which we largely suppress.

Our first main result, proved in Theorem 6.23 and illustrated in the middle row (M) of
Figure 1, is that the distribution £,(7) satisfies suitable growth and interpolation properties,
justifying the terminology ‘p-adic L-function’ Observe that finite order Hecke characters of
p-power conductor, and the p-adic cyclotomic character xqyc, are characters of Gal, (see §6.1.1).

Theorem A. Let w and T be as in Definition 1.1. Then:
(1) L,(7) is admissible of growth h, = v, (Hp‘p(a;)ep) (see Definition 6.19);

(2) for all finite order Hecke characters x of conductor lep pP» and all j € Crit(\), we have

Lw® (7r XX, ]+ %)
Qe ’

iy (L7 xXye)) = A T(x5)"Npyq@)" [ [ ep (7. X ) - €sa(m. X 5) -
plp

where ey (7, X, j) is the Coates—Perrin-Riou factor at p (defined in Theorem 6.23), e (T, X, J)
is the modified Euler factor at infinity (Definition 5.18), A € Q* is a constant (6.25), 0
is the different of F/Q, € = (XXlyeM)oo € {£1}*, T(xy) is the Gauss sum, L®) (=) is the
(finite) L-function without factors at p, and €5 is a complex period.

If h, < #Crit(X), then the restriction of L,(7) to the cyclotomic line is unique with these
properties; if further Leopoldt’s conjecture holds for F at p, then L,(7) itself is unique.

Remark 1.2. Note that, exploiting work of Jiang-Sun-Tian [54], we are able to prove the
full expected period relations at infinity. As a consequence, both sides of (2) lie in an explicit
number field E(x), with E defined in §2.9. Moreover £,(7) can be taken with coefficients in a
finite extension L/Q, containing i,(E). We have suppressed this here to ease notation.

In the first draft of this paper, in the interpolation we restricted to characters ramified at all
p|p; but in a separate paper [13] with Graham and Jorza, we computed the relevant unramified
zeta integrals which — when combined with the construction here — give the full Coates—Perrin-
Riou/Panchishkin conjecture in this case. Even in the ordinary case Theorem A upgrades [38];

indeed, it also corrects a small error in the interpolation formula ibid. (see Appendix (2)).

1.2.3. Benefits of the parahoric approach. Let us now precisely highlight the benefit of using
parahoric (rather than Iwahori) distributions. Our primary motivation is the conjecture of
Panchishkin [66, Conj. 6.2]; using our approach we prove exactly the automorphic version of his
conjecture, including the growth/unicity bounds. These would not follow from Iwahori methods.

We illustrate via examples. Let m be a RASCAR of GL4(A) spherical and regular at p. Then:

e The Iwahori-invariants 7TII)W are 24-dimensional, a direct sum of 24 1-dimensional simulta-
neous eigenspaces for the Hecke operators Uy 1, Uy 2, Up 3, with U, ; attached to (pli i )
An Iwahori refinement 7’ = (7, ap 1, p 2, & 3) is a choice of one of these 24 eigensystems.

- . J, . . . .

o The @-parahoric invariants m,"” are 6-dimensional, giving at most 6 @-refinements 7© =
. . . A
(7p, @), where oy, is a choice of Up-eigenvalue on mp,”.
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When there are 6 distinct Q-refinements, above each such (7, a,) there are 4 Iwahori refinements
7y, Th, Th, 7y, each with a0 = ayp.

To work at Iwahori level, we must choose an Iwahori refinement. To lift eigenclasses to
overconvergent cohomology, we must control all of the (normalised) U, ; operators; for example,
the non-critical slope bound depends on all three of the slopes h; := vp(a;,i) > 0. Working solely
at Iwahori level, you bound the growth of the p-adic L-function only by the sum hy + ho + hs.

By contrast, working at @Q-parahoric level, lifting requires control only of Uy from §1.1, the
non-critical slope bound depends only on hg, and we get growth bounded by hs.

In this paper, and its sequel [13], we show that p-adic L-functions depend only on the para-
horic refinement. In particular, in [13, §12.4, §14] we attach p-adic L-functions £,(7}) to the four
Iwahori refinements 7, above 7 (under stronger hypotheses, and with ostensibly weaker growth)
and compare to this paper to prove that £,(7) = L,(7]) = L,(75) = L,(75) = L,(74) (up to ra-
tional scalar). Thus the parahoric Q-refinement is the exact amount of data required to construct
a p-adic L-function; passing to deeper level requires additional but redundant hypotheses.

We give two explicit examples from the tables at smf . compositio.nl (cf. [14, §7]).

o There is a unique RASCAR 7 of GL4(A) of weight A = (12,1, —1, —12) and level 1 (taking
j =2,k = 14 in the table). At p = 11, 71 is Q-ordinary, but not Iwahori-ordinary. Let
7 be the unique Q-ordinary refinement. Using parahoric methods, we get an 11-adic L-
function £ (%) and can prove it is a bounded measure on Zj| (i.e. growth bounded by 0),
that is uniquely determined by growth and interpolation.

There are four Iwahori refinements 7} above 7, all non-critical and regular. Using only
Iwahori methods, we obtain four 11-adic L-functions £11(7}), and can prove these are
distributions on Zj] with growth bounded by 22, 12, 12 and 2 respectively. Without
further input all four of these might be unbounded, and three are not uniquely determined
by interpolation and these growth bounds.

Via this paper and [13], however, we know all of these 11-adic L-functions are in fact equal.

o There is a unique RASCAR of GL4(A) of weight (9,6,—6,—9) and level 1. The non-
critical slope bounds here are v, (Uy 1), v,(Up 3) < 4, and v,(Up 5) < 13. At p = 3, there
exists a Q-refinement 7 = (7, ) of 73 with vs(a) = 5 < 13; this is non-Q-critical slope,
so our constructions give a 3-adic L-function L£3(7), uniquely determined by growth and
interpolation. For each of the four Iwahori refinements 7' = (7, a1, a2, a3) above 7, we
have v,(aq),vp(as) = 5 > 4, so each 7’ has critical slope, and we have no unconditional

construction of L3(7’) at Iwahori level.

From [66], we expect Theorem A is optimal, and one cannot improve the non-critical slope/growth
bounds. We also expect that we construct all examples of p-adic L-functions that are: (a) at-
tached to RASCARs 7 of GLx(A) that are spherical and regular at p, and (b) uniquely deter-
mined by their interpolation/growth. An Iwahori approach does not give this.

A final, substantial, benefit is that at parahoric level, we can study local zeta integrals for
parahoric-invariant vectors at p|p. For such vectors the zeta integrals with unramified twists have
been computed in [13, §9], so we can prove our p-adic L-function has the expected interpolation
at all characters.

1.2.4. FExistence and uniqueness of Shalika families. Our second main result is the use of the
p-adic L-functions of Theorem A to study the GLo,-eigenvariety.

We now wish to vary A, so let A; denote the weight of our (fixed) RASCAR m. This is a
point in a rigid analytic (parabolic) weight space %Qﬂ of dimension d 4+ 1 (see §3.1). For any
(parahoric-at-p) level K (see (2.20)) and for any h > h, (defined in Theorem A), there exists:

— a slope-< h-adapted affinoid neighbourhood € of A in W)\Qw,
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— a sheaf % on Sk interpolating ) as A varies in 2, and

— a local piece &n ,(K) of the global parabolic eigenvariety from [19], parametrising systems
of Hecke eigenvalues occurring in the slope < h part of H:(Sk, Zq) with respect to Uy,
endowed with a finite weight map

w ggﬁ(K) — Q.

We introduce some necessary terminology:

— A point y € &q 1, (K) is classical if this eigensystem appears in 7'('5 for some cohomological
automorphic representation .

— A Shalika point is a classical point such that 7, is a RASCAR (i.e. m, is cuspidal and
admits a Shalika model).

— A classical family through 7 of level K is an irreducible component of &g 5 (K), containing
T, that contains a Zariski-dense set of classical points.

— A Shalika family is a classical family containing a Zariski-dense set of Shalika points.

In our earlier works [11, 17, 18], we developed methods for studying He(Sk, Zq) as an Oq-
module. Cuspidal cohomology contributes to a continuous range of degrees {dn?,dn? + 1,...,t}.
As we work in top degree ¢, for appropriate 7, these methods easily yield a (Shalika) point zz in
&a,n(K). To study the geometry around this point, it is crucial to understand the Og-torsion in
H!(Sk, Zq). However, previous methods controlled this torsion only in bottom degree dn?. For
n > 1, cuspidal cohomology is supported in multiple degrees; so existing methods say nothing
about the local geometry around xz, including the dimension of components through xz. Indeed,
such methods do not even rule out xz being an isolated point. It is thus a non-trivial question
if there are any classical families, let alone Shalika families, containing 7.

Let K1 () C G(Ay) be the open compact subgroup that is parahoric at p and Whittaker new
level (for m) away from p (see (7.2)). Our second main result, proved in Theorem 7.6, describes
precisely the local geometry of &q 5, (K71 (7)) at zz and, in particular, answers positively the above
question for RASCARs under very mild technical assumptions.

Theorem B. Let m be a RASCAR of G(A), and & a Shalika p-refinement. Suppose that

(a) Ax is regular,

(b) 7 has non-Q-critical slope, and

(c) the p-adic Galois representation p, attached to w is absolutely irreducible.
Then &g 1, (K1(7)) is étale over Q at xz. Up to shrinking Q, w induces an isomorphism € == Q,
where € is the connected component of &q n(K1(7)) through xz, and € is a Shalika family.

The same conclusions hold replacing (a) and (b) with the strictly weaker assumptions that

(a') Ar is H-regular (Definition 7.5) and £,(7) is non-zero, and
(b") 7 is strongly non-Q-critical (Definition 3.14).
See §7.1 for more details.

A technically challenging strategy for proving existence of the Shalika family % is to exhibit
it as a p-adic Langlands transfer from GSpiny, ,,/F. This requires a number of additional
hypotheses for general spin groups. Instead, we argue directly using the groups H¢(Sk, Zq) —
without recourse to GSpin,,,,; — and prove existence via a novel application of our evaluation
maps, suggested to us by Eric Urban. We briefly summarise this argument. We complete the
construction of Figure 1, including the map Evq : H.(Sk, Za) — D(Gal,, Ogq), in §6. A

standard argument provides a class ® € H.(Sk, Zq) lifting @7 under the natural specialisation
map. Then:

10
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o If £,(7) # 0, then — by the proof of Theorem A — we know Ev(®z) # 0. Hence, via the
commutativity of the top square in Figure 1, we deduce Evq(®) # 0.

o The map Evg is Og-linear, and valued in the torsion-free Og-module D(Gal,, Oq). As
Evq(®) # 0, we deduce @ is non-Og-torsion.

o It follows that H:(Sk(#), Za) is a faithful Og-module. We exploit this to deduce existence
of a component in the eigenvariety of maximal dimension through 7.

If there is a non-zero Deligne-critical L-value for 7 (which always exists when A is regular),
then the p-adic L-function is non-zero. The above argument then yields a classical family in the
eigenvariety at the (sufficiently small) level K (7) used in §1.2.2. To upgrade this to a Shalika
family, we again exploit our evaluation maps, giving (via Proposition 5.15) a criterion for being
Shalika that is open over the eigenvariety.

It remains to prove uniqueness and étaleness. However, to exploit non-vanishing L-values,
we must work at level K (7). As this is inexplicit, it is difficult to further control the geometry
of families of level K (7). We can obtain more control by working at new tame level, that is
at level Ki(7). We perform a delicate level-switching argument — using the local Langlands
correspondence and p-adic Langlands functoriality (see §7.5) — to transfer the family to level
K (7), where we then complete the proof of Theorem B.

We conclude §7 with an application of Theorem B to the global geometry of the eigenvariety.
In Theorem 7.26, we show that if 7 is as in Theorem B, and .# is the (unique) irreducible
component of the global eigenvariety through 7, then every non-Q-critical slope classical point
of .# is Shalika. We actually prove more: that every point (classical or not) of .# is symplectic,
arising from GSpiny,, ; ;. Our proof goes through p-adic Langlands functoriality and occupies all
of §7.7. We thank the referee for pushing us to prove such a result.

Remark 1.3. Theorem B describes the geometry of the Q-parabolic eigenvariety. This is nat-
ural in light of §1.2.3. Eigenvarieties for non-minimal parabolics have been well-studied; for a
summary of constructions and arithmetic applications, see [19, Intro]. Major recent applications
include Bloch—Kato for GSp, [60, §17] and modularity of elliptic curves over imaginary quadratic
fields [30, §2.2].

The most traditional flavour of eigenvariety comes attached to a minimal parabolic subgroup,
the Borel subgroup B C G, corresponding to Iwahoric level at p. With appropriate adaptation,
and stronger assumptions, our methods also apply to this case, and we can prove the analogue
of Theorem B for the Iwahori eigenvariety over the pure weight space (whose dimension grows
with n). This — and applications to families of p-adic L-functions — is the subject of a follow-up

paper [13] with Graham and Jorza.

1.2.5. p-adic L-functions in Shalika families. To prove Theorem A, we worked at a specific
(inexplicit) level K (7), at which we have a precise connection to L-values. In Theorem B, we
worked at a second specific (explicit) level K7 (7), where we obtain control over p-adic families.

When 7 is everywhere spherical away from p — that is, when 7 has tame level 1 — these two
levels coincide. More precisely, we may take

K(7) =K (#) = [[ /s [] GL2n(0).
plp vipoo

In Chapter 8, we crucially exploit this to vary p-adic L-functions in families in the tame level 1
case (see Theorem C below).

The obstruction to generalising to higher tame level arises from local representation theory:
namely, given a place v t poo such that m, is ramified, we need to find explicit ‘test vectors’

11
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in the Shalika model of 7, such that an attached Friedberg—Jacquet zeta integral computes the
L-factor of m, (see (2.15)). It is known that such vectors always exist abstractly, but explicit
vectors — of the kind required for variation of p-adic L-functions — have not yet been found.

In §8.1 and §8.2, we describe, in very general terms, what kind of results would allow us to
generalise Theorem C to higher tame level. On a concrete level, we hypothesise a possible theory
of explicit test vectors, via Shalika new vectors, a Shalika analogue of the classical (Whittaker)
newform theory of [51] (see Definition 8.2). Ramified examples where these hypotheses are
satisfied have been found in the work [39] of the second author and Jorza.

We assume 7 satisfies this hypothesis for the rest of the paper. This allows us to work
solely at a ‘Shalika’ level where we precisely see L-values, whilst still controlling the geometry
of a modified eigenvariety &g ;,, defined by introducing additional diamond operators at places
v e S ={v{poo:m, ramified}. In particular, we prove the following refinement of Theorem B.

Theorem B’. (Theorem 8.11). Suppose that: (a) \; is regular, (b) T has non-Q-critical slope,
and (c) for all v, Hypothesis 8.6 holds for ¢ = c¢(m,). Then:

o &3y is Etale over Q at 7, and (up to shrinking Q) the connected component € through &
is a Shalika family mapping isomorphically onto Q under w.

e & contains a very Zariski-dense set Gn. of classical points satisfying the conditions of
Definition 1.1 (see also Conditions 2.8). For all v, every point in €y has a Shalika new
vector of conductor c(m,).

e There exists an eigenclass P € HE(SK(;T), Pq), interpolating the classes @z, for y € Gue
(upto scaling by p-adic periods).

When 7 has tame level 1, condition (c) is automatically satisfied with each ¢(m,) = 0, and
the eigenvariety &g, is nothing but &q,;, from above; so there are a ready supply of RASCARs
where this result is unconditional. In general, we may also weaken assumptions as in Theorem B.

Given Theorem B’, standard methods give the analytic variation of £, (7) over ¢ as a formal
consequence of our evaluation maps in families. The definition of the multi-variable p-adic L-
function is summarised in row (T) of Figure 1.

Definition 1.4. Under the hypotheses of Theorem B’, let 4 be the Shalika family through 7.
Define the p-adic L-function over € to be

LY = Evg(®«) € D(Gal,, Og).

Let 2 (Gal,) be the Q,-rigid space of characters on Gal,; then via the Amice transform ([23,
Def. 5.1.5], building on [1, 73]), we may view £ as a rigid function

LY % x 2 (Galy) — C,.
Our third main result (Theorem 8.21) is that Lf interpolates £, (7, ) as y varies in the set Gpe.

Theorem C. Suppose the hypotheses of Theorem B'. Then at every y € Gpe, there exists a set
{egel>ee {£1}*} of p-adic periods such that for every x € 2 (Gal,), we have

Lf(y, X) = Cg(;xn)m : ‘Cp(ﬁyv X)- (1.2)
Let 2°(Gal’®) € 27 (Gal,) be the cyclotomic line, i.e. the Zariski-closure of {x%,. : j € Z}.

Via Theorem A, Ef simultaneously interpolates the values L(m, X x,j+ %) over the set of points
Crit(¥) = {(y, Xngc) €C x 2 (Gal)®) 1 y € G, j € Crit(w(y)), x finite order}.

The set Crit(¢) is Zariski-dense in € x 2" (Gal$Y), so the restriction .£,¢
determined by this interpolation. Specialising at 7, we deduce:

©x 2 (Galeye) 18 uniquely

12
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Corollary 1.5. Assume the hypotheses of Theorem B'. Up to a non-zero scalar, the restriction

of L,(7) to the cyclotomic line is uniquely determined by interpolation over Crit(%).

If further Leopoldt’s conjecture holds for F' at p, then we obtain a similar uniqueness
statement for £,(7) itself, made precise in §8.5. These results should be compared to The-
orem A, where we showed L£,(7) is determined by growth and interpolation, but only when
hp < #Crit(Ar).

Finally, let us highlight some examples for which the assumptions of Theorem C are satisfied.
Let f be a classical cuspidal Hilbert eigenform of level 1 and weights > 3. The symmetric cube
Sym?®(f) is a RASCAR for GLy of level 1 [45, Prop. 8.1.1]. When Sym?(f) is non-Q-critical (e.g.
if f itself is p-ordinary), then Theorem C shows that its p-adic L-function, as constructed in
Theorem A, can be interpolated over the Hilbert cuspidal eigenvariety from [3]. More generally,
Newton—Thorne recently showed that arbitrary symmetric powers of f are RACARs in [64, 63],
and the odd symmetric powers are RASCARs.
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2. Automorphic preliminaries

The following fixes notation and recalls how to attach a compactly supported cohomology class
(with p-adic coefficients) to a suitable automorphic representation. Everything here is standard.

2.1. Notation. Let F be a totally real number field of degree d over Q, let O be its ring of
integers and X the set of its real embeddings. Let A = A; x R denote the ring of adeles of Q.
For v a non-archimedean place of F', we let F,, be the completion of F' at v, denote by O, the
ring of integers in F),, and fix a uniformiser co,.

Let n > 1 and let G be the algebraic group Resp,,zGLan, B = Resp,./z B2, be the Borel
subgroup of upper triangular matrices, with opposite B~, N and N~ be the unipotent radicals of
B and B~ respectively, and T' = Resp,, /z T2, be the maximal split torus of diagonal matrices. We
have decompositions B = TN and B~ = N~T. We let K, = CsZg(R), where Cy, = O, (R)?
is the standard maximal compact subgroup of G(R) and Z¢ is the centre of G. For any reductive
real Lie group A we let A° denote the connected component of the identity.

Let H denote the algebraic group Resp,, /z(GLy x GLy,), which we frequently identify with
its image under the natural embedding ¢ : H < G given by (h,h’) — (}OL o)

Let Zy be the centre of H. We write ) = Resp,./z (G(I)“" Cl:%;) for the maximal standard
parabolic subgroup of G (containing B) whose Levi subgroup is H, and we denote by Ng its
unipotent radical.

Fix a rational prime p and an embedding i, : Q < Qp. We fix an extension of 7, to an
isomorphism iz, : C = Q,,. For each embedding o : F' — R in X, there exists a unique prime

13
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p|p in F such that o extends to an embedding F, — Qp; we write p(o) for this prime, and let

E(p)={oc€X:p(o) =p}.

We let Op ) := O ® Z,.

Let FP*° be the maximal abelian extension of F' unramified outside poo, and let Gal, =
Gal(FP*>/F), which has the structure of a p-adic Lie group. Let Gal”* := Gal(QP*F/F).

Given an ideal I C Op we let % (I) == {z € @; :x =1 (mod )}, and consider the narrow
ray class group 675 (I) = F*\A S/ % (I)FX°.

All our group actions will be on the left. If M is a R-module, with a left action of a group I,
then we write MY = Hompg(M, R), with associated left dual action

For an affinoid rigid space X, we write Ox (or, for clarity of notation, occasionally O(X))
for the ring of rigid functions on X, so X = Sp(Ox).

2.2. The weights. Let X*(7T') be the set of algebraic characters of T. Each element of X*(T)
corresponds to an integral weight A = (A, )yex, where

)‘U = ()\U,h D) >\0',2n) S ZQn~
e We say that X\ is B-dominant if it satisfies
Aol Z ... 2 Aoon for each 0 € X,

and we let X7 (T') C X*(T') be the subset of B-dominant weights.
e We say that X is pure if there exists w € Z, the purity weight of A\, such that

Ao+ Ao2n—it1 =W for each o € X and i € {1,...,2n}.

We denote by X (T") C X7 (T') the subset of pure B-dominant integral weights; these are
exactly those supporting cuspidal cohomology [33, Lem. 4.9].
o We say A is regular if
Aosi > Aoyitl for all o and 1.

We emphasise that a RACAR 7 does not necessarily have regular weight; e.g. 7 can have
(non-regular) weight A = (0, ..., 0).

For A € X} (T), we let V) be the algebraic irreducible representation of G' of highest weight
A; for a sufficiently large field L/Q,, the L-points V(L) can be explicitly realised as

Va(L) = {f : G(Q,) — L algebraic : (2.1)
f(n"tg) = A(t)f(g) for all n™ € N™(Qp),t € T(Qp),9 € G(Qp)}-

The (left) action of G(Q,) is by right translation, i.e. (h- f)(g) = f(gh) for g,h € G(Q,) and
f € Vi. Let VY denote the linear dual, with its (left) dual action; we have an isomorphism
VY 2 Vv where
A = (A)ses, A= (“No2ny- s —Ao1)-
Note AY = —ws,, ()) is the contragredient of A, for ws, the longest Weyl element for G. Note the
central characters of VY and Vy are inverse to each other, and if A is pure, then as G-modules
we have (e.g. [45, §2.3])
VY 2 V) ®[Np/q odet] ™.

14
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By Zariski-density any f € V) is uniquely determined by f|g(z,). We have a natural integral sub-
space V\(Or) of f € VA(L) such that f(G(Z,)) C Or; we let VY(Or) = Home, (VA(OL), OL).

Let X*(H) be the set of algebraic characters of H. Each element of X*(H) is identified with
an integral weight

(jvjl) = (jaaj{y)aGEv jo’vj;' €Z
We say (j,5') € X*(H) is Q-dominant if j, > jl for each o € ¥, and let X% (H) C X*(H) be
the subset of @Q-dominant weights. We say that (j,j') € X*(H) is pure if there exists w € Z such
that j, + j, = w for all 0 € ¥, and let

X3 (H) € X7(H)
be the subset of pure @Q-dominant weights. Since B C @, we naturally have
X*(H)C XN(T),  XL(H)C XUT),  Xg(H) < Xy(D).
Given a pure B-dominant integral weight A = (\,)sex, we define a set
Crit(\) ={j€Z: -Xop <j< —Apnt1 Vo € X} (2.2)

If 7 is a RACAR for G(A) of weight A (which we take to mean cohomological with respect to
VY, in the sense of §2.5), then [45, §6.1] proves

j € Crit(\) <= for all finite order Hecke characters x of F, the L-value

Lir®x,7+ %) is critical in the sense of Deligne.

2.3. Local systems and Betti cohomology. Let K C G(Ay) be an open compact sub-
group. The locally symmetric space of level K is the d(2n — 1)(n + 1)-dimensional real orbifold

Sk = G(Q)\G(A)/KKZ,. (2.3)

2.3.1. Archimedean local systems. Let M be a left G(Q)-module such that Z¢(Q) N KK, acts
trivially (else, the local systems we define are zero). To M we attach a local system M = My
on Sk, defined as the locally constant sections of

G(Q\G(A) x M]/KKZ, — Sk,

with action v(g, m)kz = (ygkz,7 - m). We use calligraphic letters for such local systems.

Applying to M = VY(E) for a characteristic zero field E, we can consider Betti cohomology
groups H?(Sk, V/\\/K(E)) where * = @ for the usual and * = ¢ for the compactly supported ones.
Given any finite index subgroup K’ C K one has

* V _ Vv
pK',KV,\,K = V/\,K”

where prr g : Sxr — Sk is the natural projection. The adjunction yields then a natural
homomorphism

H: (Sk, VX k() = Hi(Sk, (pxr )Pk x Vo i (E)) = H2(Skr, VX oo (E)).

allowing us to consider the ‘infinite level’ cohomology

This admits a natural G(A y)-action, whose K-invariants are H$ (S, VY (E)). Because of this
compatibility, for ease of notation we henceforth drop the subscript K and write only VY (E).
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2.3.2. Non-archimedean local systems. For the rest of the paper, we will work with cohomology
with p-adic coefficients, for which we need an appropriate notion of non-archimedean local sys-
tems on Sk. Let M be a left K-module on which the centre Zg(Q) N KK acts trivially. To
M, we attach a local system .# = .#k on Sk as the locally constant sections of

GQN\IG(A) x M]/KKS, — Sk,

with action v(g, m)kz = (ygkz, k™! - m). For these we use script letters, e.g. ¥, 2.

Suppose now M has a left action of G(Ay). This gives left actions of G(Q) and K on M,
and we get associated (archimedean and non-archimedean) local systems M and .# attached to
M. One may check (see [81, §1.2.2]) there is an isomorphism

M= A, given on sections by (g, m) — (979;1 -m).

The following is the example of most importance to us. If L/Q,, contains the field of definition
of A, then M = V) (L) can be realised as a space of functions f : G(Q,) — L. If up € V/(L),
feVi(L), and g € G(Qp), then VY(L) carries an action of h € G(Ay) by

(h- w[f(9)] = ulf(ghy, )],

where h,, is the image of h under the projection G(Ay) — G(Q,). We get two local systems
VY (L) and #,/(L), and as above, we get an isomorphism VY = #,Y.

2.3.8. Hecke operators. Let M be a left module for G(Q) (resp. K), and let v € G(Ay), which
we suppose acts on M. As in [38, §1.4] define a Hecke operator on H?(Sk, M) by

[KyK] = Tr(pnyfyflﬁK,K) o [v] op;(n»flK»y,K tHe(Sk, M) — He (S, M),

where Tr is the trace map attached to the finite cover Syxy-1nx — Sk, P’ K : Sk — Sk is
the natural projection, and

(V] HS(Skny-1k+, M) = HS (S k410K, M)

is given on local systems by (g,m) +— (g7 1, -m) (and similarly for .#-coefficients).
One can check that if M is a G(Af)-module as in §2.3.2, then the isomorphism

H:(SK,M) L)H:(SK,%) (24)
induced from the isomorphism M = ./ is Hecke-equivariant [81, §1.2.5].

2.8.4. Operators at infinity. If o € ¥, then K, /K2 = {41}, and thus K., /K2, = {£1}*. Any
character € : Koo /K2, — {#£1} can also be identified with an element of {£1}*. If M is a module
upon which K.,/KS acts, let M€ be the submodule upon which the action is by e. If M is a
vector space over a field of characteristic # 2, then M = @.M€. Since the group acts naturally
on Sk and its cohomology, and this action commutes with the G(A f)-action, we thus obtain
decompositions of its cohomology into Hecke-stable submodules (see e.g. [45, p.15]).

2.4. The spherical Hecke algebra. Let m be a RACAR of G(A) of weight A, and let
S = {v {poo : m, not spherical}
be the set of bad places for 7. Let

K =Tl K0 C G(A)
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be an open compact subgroup such that 77;( #0; for v ¢ SU {p|p}, we take
K, = K = GL3yp(O,).

We now introduce the (unramified) Hecke algebra. Let X (T5,) denote the set of algebraic
B-dominant cocharacters of Ty, C GLa,, identified with tuples v = (v1,...,v9,) € Z?" with

VI =g = = Vo, via x — diag(z™, ..., z"").

Definition 2.1. For v ¢ SU {p|p}, and any v € X} (T,), let T, , == [Kv(w,)K]]. The un-
ramified Hecke algebra of level K is the commutative algebra H’ generated by all such operators:

H =Z[T,,: v e X (Ton),v ¢ SU{plp}.

For any choice of K such that K, = K? for v ¢ S U {p|p}, the algebra H' acts on 7¥ via
right translation, and on H$(Sk, —) as described in §2.3.3.

Definition 2.2. Let E be a number field containing the Hecke field of m¢. Attached to 7 we
have a homomorphism
Ve H®OE—>FE

which for v € X} (Ts,) and v ¢ S U {p|p} sends T, , to its eigenvalue acting on the line i
Let m, := ker(¢,), a maximal ideal in H' ® E. If L is any field containing F, we get an induced

maximal ideal in H' ® L, which in an abuse of notation we also denote m,.

Note in the set-up above, if M is a finite-dimensional L-vector space with an action of H’,
then the localisation My, is the generalised eigenspace M [m, ] attached to ;.

2.5. Cohomology classes attached to RACARs. We now attach compactly supported
cohomology classes to RACARs. All the discussions in §2.5 are standard, and culminate in
Proposition 2.3 below.

First, we recall standard results on cuspidal cohomology from [25, 33]. For a weight A €
X (T), the Betti cohomology H*(SY, VY (C)) is an admissible G(A)-module. It admits a
G(Ay)-submodule ngsp(SG,V/\\/(C)), which we can describe using relative Lie algebra coho-
mology as

H:usp(SGv V;\/(C)) = @H. (9007 Kf:o; Too @ V,\V(C)) Qg (2.5)

where goo = Lie(G) and the sum is over all RACARs 7 of G(A). If 7 contributes non-trivially
to the direct sum in (2.5), then we say it has weight A, and it then contributes to all degrees i
where

H' (goo, K305 o0 @ V3 (C)) # 0,
which by [33, p. 120] (see also [45, (3.4.2)]) is for ¢ in the range

dn® <i<dn*+n—1)=t (2.6)
Denote the K-invariants by
He o (S5, VX (€)) 1= Hiy, (89, VY (€)X € H* (Sk, VX (C)).

If 7 has weight A, then 7 contributes to Hg,,(Sk, Vy (C)) if and only if 7 # {0}.
The action of the Hecke algebra H' on H*(Sk, VY (C)) preserves the cuspidal subspace. If we
take K-invariants in (2.5), and localise the resulting H’-module at m, C H’, then by the Strong

Multiplicity One Theorem only the m-summand in the right-hand side survives, i.e.

H;usp(SG7 V)\\/(C))mn =H* (9007 Kgo’ Too @ V)\V(C)) ® ﬂ-)[f{'
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There is a natural action of K,/KS on the factor at infinity, hence on cuspidal cohomology,
and taking e-parts for € € {1} (as in §2.3.4), we then obtain

H2 (S9 VY (C)i, = H® (900, K35 © VY (C)) @ 7 (2.7)
As in [45, §4.1], for degree ¢ (that is, at the top of the range (2.6)) we have
dimec H'(goo, K33 oo ® VY (C)) =11 (2.8)
for all € € {+1}*. Fixing a basis Z¢_ of (2.8) fixes an H’-equivariant isomorphism
T =2 Heuep (S, VX ()i, »

defined by ¢ — 5 ® @5.
By [40], if w is a RACAR, then it does not contribute to the Eisenstein cohomology, so after
localising we have
H;usp(SK7 V/\\/(C))mw = H.(SKa V;/((j))m7r .

Since 7 is cuspidal, the boundary cohomology vanishes after localising at m,; so the boundary
exact sequence yields an isomorphism

H2 Sk, VX (C))m, == H*(Sk, VY (C))um, -
Combining gives an isomorphism
I s B (S, WY (C)) (2.9)
Finally, via our fixed isomorphism i, : C = Qp and the isomorphism (2.4), we have isomorphisms
HE (S, VX () —2 H2 (S5, X (@) (2.10)
L Sk, 1 (@),
As all the maps above are Hecke-equivariant, combining we finally deduce:
Proposition 2.3. There is a Hecke-equivariant isomorphism
T = HY(Sk, 15 (Q))), - (2.11)

This isomorphism is non-canonical, depending on the choice of basis 25 of (2.8).

2.6. Shalika models and Friedberg—Jacquet integrals. We recall some relevant facts
about Shalika models (see e.g. [45, §1,§3.1]). Let

Syp={s=(",)- ("1 ):heGL, X €M,}

be the Shalika subgroup of GLy,,/r, and & = Resp/QS,r. Let ¢ be the standard non-trivial
additive character of F\ A from [38, §4.1], and let ) be a Hecke character of F*\A}. For s € S,
write

(n @) (s) = n(det(h))y(Tr(X)).

A cuspidal automorphic representation 7 of G(A) (of weight A) is said to have an (1, ¢)-Shalika
model if there exist ¢ € 7 and g € G(A) such that

S1(9)(g) = / o(59) (0 ® )~ (s)ds # 0. (2.12)

Za(A)S(Q\S(A)
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This forces ™ to be equal to the central character of 7, and hence n = no| - |, where 79 has

finite order and w is the purity weight of A\. If (2.12) holds, then SZ defines an intertwining
(A)

G
T <> IndS(A)

(n ® 1), realising 7 inside the space of functions W : G(A) — C satisfying
W ((29)(§X)e) =mn(det(h))y(tr(X))W (o) Vh € GL,(F), X € M,(F). (2.13)

If 7 has an (7, v)-Shalika model, then for each place v of F' the local component 7, has a local
(1w, ¥y)-Shalika model [45, §3.2], that is, we have an intertwining

Spr s my = Indg 2™ (m, © 4). (2.14)

Remark 2.4. Note (2.12) defines a canonical global intertwining. We emphasise that the local

intertwinings are not canonical. However the local Shalika model is unique in the sense that

GLo, (Fy
3(}30)( s ®’(/}'u):| =1

(see [65, 31]), so the image S/’ (m,) of S/ is canonical. We henceforth fix a (non-canonical)

dim¢c Homgr,, (r,) |7, Ind

choice of intertwining Sch of my (or equivalently, via (2.12), an intertwining S,/ of 7).

When 7, is spherical it is shown in [7, Prop. 1.3] that it admits a (n,,,)-Shalika model if
and only if 7Y = 7, ® ;L. In this case we deduce 7, is unramified.

Let 7 be a cuspidal automorphic representation of G(A), and x a finite order Hecke character
for F. For W € S(7) (the image of 7 under S)) consider the Friedberg-Jacquet zeta integral

(s, W, x) ::/

GL,(Ar) W [(h Inﬂ x(det(h)) |det(h)IS*% dh,

which converges absolutely in a right-half plane and extends to a meromorphic function in s € C.
When W = ®,W,, for W, € SZ (7, ), this integral is a product of local zeta integrals (s, Wy, Xy )-

A Friedberg-Jacquet test vector W € SZ” (my) is a vector such that for all unramified quasi-
characters x, : £, — C*, we have

G (54 5, W5 ) = NayQ(0) xo (@)™ - L (70 ® xors + 3). (2.15)
where 4, is the valuation of the different of F, and L(m, ® xv, s+ %) is the Langlands L-function
of T, ® xu. By [41, Prop. 3.1], if 7 is a RACAR admitting a (n, 1)-Shalika model, then for every
finite place v there exists such a Friedberg—Jacquet test vector in SZZ (my). If m, is spherical,
then one can take WY to be a spherical vector, i.e. a vector fixed by GLa,(O,), normalised so
that WFJ(t9v) = 1 [41, Prop. 3.2], [38, Prop. 3.3].

2.7. Parahoric p-refinements. Let

Jp ={g € GL2,(0,) : g (mod p) € Q(O,/p)} C GLay(F}) (2.16)

be the parahoric subgroup of type Q. We will always assume m, is @-parahoric-spherical, that
is, admits J,-fixed vectors. Recall «(h,h') = (g ,?, ), and let t, = «(wyly, I), recalling wy is a

uniformiser of F,. On 7Tg ", we have the Hecke operator
Uy = [Jptpdp].

Definition 2.5. A Q-refinement 7, = (7, op) of m, is a choice of U,-eigenvalue ), on w';]‘“. We

say a ()-refinement 7, is reqular if o, is a simple Up-eigenvalue on 7er . that is,
dimc 7rp‘]‘°[[Up —ap] =1
We say 7, is Shalika if it is regular and if for any generator W, of SZ‘; (7er ")Up — ap ], we have

W, (t, ") # 0. (2.17)
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Remark 2.6. If 7, is a Shalika Q-refinement, then for h € GL,(O,) we see
) -5 -5 -5
n(det(h)) - Wy(ty ™) = Wy (u(h, )ty ™) = Wy(t, 7 u(h, h)) = Wp(t, ™),

using (2.13) in the first equality and J,-invariance in the last equality. By non-vanishing, we
have 7, (0Oy’) =1, so n, is unramified.

Condition (2.17) is motivated by non-vanishing of a local zeta integral; see Proposition 5.20.
Indeed, if W, € SZ’: (’/Tp)‘] » is any vector, a relevant local twisted Friedberg—Jacquet zeta integral
attached to W, is computed in [38, Prop. 3.4] and shown to be a scalar multiple of W (t, o )
(see Lemma 5.20).

The following stronger assumptions give a ready source of 7, as above. Suppose 7, is spherical
(admits GLa, (Op)-fixed vectors). In this case 7, = Ind$6, is an unramified principal series, for
0, = (0p.1,...,0p,2,) an unramified character of T'(F,). Ash-Ginzburg show in [7, Prop. 1.3]
that such 7, have an (n,,,)-Shalika model if and only if the 6, ;’s can be ordered so that
Op,ibp nt+i = Mp for 1 < i < n. Then [38, Lem. 3.6] shows our notion of Shalika is equivalent to
being Q-regular in [38, Def. 3.5]:

Proposition 2.7. [38, Lem. 3.6]. Suppose m, = Ind%6, is spherical, that 6, 0pnri = 1y for
1<i<n. Leta,= qg2/29p,n+1(wp) Oy on(wy), where g = Np/q(p). Suppose (mp, ) is a
reqular Q-refinement. Then it is a Shalika Q-refinement.

For spherical m,, the Q-refinements that can be described as in Proposition 2.7 are exactly
the @Q-spin refinements from [14]. If all the (2711) possible Q-refinements of m, are different, then
2" of them are @-spin, so this condition covers a wide range of 7.

Globally, a (Shalika) Q-refined RA(S)CAR is a tuple & = (m,{ap}y|p), for a RA(S)CAR 7
where m, is Q-parahoric-spherical and (7, ) is a (Shalika) Q-refinement for each p|p. We will
construct p-adic L-functions and families for any Shalika @Q-refined RASCAR, i.e. assuming only
that m, is parahoric-spherical at each p|p. However, if we assume further that each 7, is as in
Proposition 2.7, we obtain slightly stronger results.

2.8. Running conditions on 7. We finally collect our running assumptions. Fix for the rest
of the paper a finite order Hecke character ng of F'. We work with two levels of generality; our
results apply under (C2), but are more precise under the stronger assumption (C2').

Conditions 2.8. Let m be a RACAR of G(A) of weight A such that
(C1) 7 admits a global (1] - |",¥)-Shalika model, for w the purity weight of ;
(C2) for each p|p, m, is parahoric-spherical admitting a Shalika @Q-refinement 7, = (7, @), i.e.

dimg S} (my")[Uy — ap] = 1 (2.18)

(for mp = 1no0,p| - [y) and this line admits a generator W), such that Wp(t;(s") =1.
By Remark 2.6, (C2) forces 1, to be unramified. We also use:

Conditions 2.8'. Let 7 be a RACAR of G(A) of weight A such that (C1) holds and

(C2) for each plp, mp = Indgﬁp is spherical, satisfies the hypotheses of Proposition 2.7, and
7ip = (mp, ap) is the Shalika @Q-refinement from that result.

By Proposition 2.7, (C2) is automatic from (C2'). The Q-refined RACARs 7 described in
Theorems A, B and C of the introduction satisfy (C1-2"), hence (C1-2).
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In general ay, is not p-integral. We define weight A integral normalisations
Uy = Atp)Up,  ap = A(tp)ay. (2.19)

o

We justify this in §3.3. A Q-refinement 7, is equivalent to a choice of Uy-eigenvalue oy on 7er i

and 7r,‘,]p [Up — o] = 7r,‘,]p [Ug — ap]. Occasionally we abuse notation and write 7, = (my, ap).

2.9. The p-refined Hecke algebra. Let 7 satisfy (C1-2), and let K C G(Ay) be an open
compact subgroup with

K =T[, K, st. K, = GL,(O,) for v ¢ SU{plp}, K, = J, for p|p, and 7 #0.  (2.20)
Recall H’ and 1, (which implicitly are defined at level K) from §2.4.

Definition 2.9. Define H = H'[U}; : p|p|. Let £ = Q(7,n) be the number field generated by
the Hecke field of 7y, the rationality field of 7, and aj for p[p. The character ¢, extends to

wﬁH(g)E—)E

sending Uy to ay. Let mz := ker(¢)z). If M is a finite dimensional vector space with an H-action,

the localisation My, . is the generalised eigenspace at ¢z, i.e.

M, [U; —ay :plp] C My, .

2.10. Automorphic cohomology classes and periods. Recall in Remark 2.4 we fixed an
intertwining SZ; of y. For € € {+1}*, composing (SZ;)’l and (2.9) we obtain a H-equivariant
isomorphism

O+ SI (wh) <= HL(Sic, VY ().

further composing with (2.10), we obtain a p-adic analogue
K,e f ~ — .
05+ S (mf) = Hi(Sk, 3 (Qp))a, (2.21)

which is again H-equivariant.

Finally we descend to rational coefficients. Recall the number field E from Definition 2.9.
We have a natural action of Aut(C) on SZ; (m¢) (see [45, §3.7]), endowing it with an E-structure
SZ; (77, E) by [45, Lem. 3.8.1]. We may (and do) take W’ to be an element of SZ’; (s, E)
(see [45, Lem. 3.9.1]). By [33, Prop. 3.1], [45, Prop. 4.2.1] and [54, §4.4], there exist complex
periods Q¢ such that ©%:¢/Q¢ is Aut(C)-equivariant. In particular, if L/Q,, is a finite extension
containing i,(E), then

orc /o (2.10)
Sy (nf, B) ———H{(Sk, VY (E))5, = Hi(Sk. 73/ (L)), (2.22)

Ny _K @iye/ipm;) t Vi )\e
S (7) . HE(Skc, 15 (@),

commutes, where the vertical arrows are the natural inclusions.

Assume that 7 satisfies Conditions 2.8; we now produce specific cohomology classes attached
to 7. At each finite place v of F, in [45, §6.5] the authors define a (sufficiently small) open
compact subgroup K, C GLa, (F,) such that there exists a Friedberg-Jacquet test vector WFJ €
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Sy (my)Ev asin (2.15). Asin [38], we can (and do) take K, = GL2,(O,) whenever 7, is spherical,
and define
K#) =] 7 ][ Ko G(Ay). (2.23)
plp ofp
Note K (7) satisfies (2.20). For p|p, let W, be a generator of the line in (2.18), normalised so
that W, (t, ") = 1. Write

WfFJ = DppWp Butpoo w7l e SZJ; (W.f)K(ﬁ)~

v

Definition 2.10. Let

¢ =08 DWEY) i, (Q5) € H(Sk(ay, 73 (L))

my

This is precisely the class defined in [38, §4.3.1], where the scaling by Q¢ is implicit. Note
that by construction, the class ¢% is a Uy-eigenclass with eigenvalue o, for all p|p (see also [38,
Lem. 3.6]), thus lies in the p-refined generalised eigenspace H.(Sk, ¥, (L))

€
mx*

3. Overconvergent cohomology and classicality

We recall the Q-parahoric overconvergent cohomology and non-Q-critical slope conditions of [19],
while making the theory explicit in our setting.

3.1. Weight spaces. Recall X*(T), X¢(T), X*(H) and X{(H) from §2.2.

Definition 3.1 (Weights for T). The weight space # ¢ for G is the rigid analytic space whose

L-points, for L C C,, any sufficiently large extension of Q,, are given by
# (L) = Homeons (T(Z,), L).

This space contains the set X3 (T") of dominant integral weights in a natural way. We call any
element of this subspace an algebraic weight.

A weight A € # ¢ decomposes as A = (\q, ..., Ao, ), Where each ); is a character of (OFp)*.
We see that # ¢ has dimension 2dn.

Definition 3.2. Let V/OG be the (dn + 1)-dimensional pure weight space, that is the Zariski
closure of the pure, dominant, integral weights X3 (7") in #¢. We have

W (L) :={NewC(L) | Iw, € Homeons (Z,, L) s.t.
Ai - Aang1—i =wWxoNp/q V1 <i<n}

In §1.2.3, we highlighted the flexibility of using parahoric distributions: much weaker notions
of finite slope families and non-criticality. This comes at the cost of less flexibility in variation,
as such distributions vary only over the following (d + 1)-dimensional subspaces of %G.

Definition 3.3 (Weights for Q). Define # ¢ C #C to be the rigid subspace whose L-points are
continuous characters that factor through a character H(Z,) — L*. Let V/OQ =#NHE be
the pure subspace. These are the Zariski closures of X*(H) and X (H) in #'C.

The space # @ is the subspace of # ¢ where
A1 ==\, (= 11, say) and Ant1 =+ = Aap(= 1o, say).

The association A + (vy,1) identifies # @ isomorphically with the 2d-dimensional (Hilbert)
weight space of Resp/q GLa; the (d 4 1)-dimensional pure subspace WOQ is canonically identified
with the pure Hilbert weights.
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Definition 3.4. For A, € X;j(T') a pure, dominant, algebraic ‘base’ weight (implicitly, the

weight of an automorphic representation ) let
P2 = e W N e #EPY = M

Remark 3.5. To get non-trivial weight A local systems on Sk we need A(Z(Q)NK) =1. If 7
is a RACAR of weight A, and K satisfies (2.20) for =, this condition is satisfied by existence
of an automorphic form fixed by K. It is hence also true for all A in a sufficiently small affinoid

neighbourhood €2 C V/AQW of A\, as such A are pure and hence
MZ(Q)NK) C (woNp/q)"(Of) C {1}

is discrete. As all of our arguments are local in 7//8, for the rest of the paper we will always

assume this condition is satisfied for the levels K and over the affinoids Q2 we work with.

3.2. Parahoric distribution modules. Recall for L/Q, sufficiently large, Vi(L) is the al-
gebraic induction Indgg” §>" Typically overconvergent cohomology coefficients are dual to the

locally analytic induction .Af of X to the Iwahori subgroup. We define Q-parahoric analogues.
If X C Q is compact and R is a Qp-Banach algebra, let A(X, R) be the space of locally
analytic functions X — R, and

D(X, R) = Homont (A(X7 R)’ R)

be its topological R-dual. If W is a finite Banach R-module, then we say a function f: X — W
is locally analytic if it is an element of A(X, R) @ g W, and write A(X, W) for the space of such
functions. (These definitions are explained in detail in [19, §3.2.2]).

3.2.1. Parahoric algebraic induction modules. As motivation, we first give a parahoric descrip-
tion of Vy. Let G, = Resp,,/z GL, and recall H = G,, x G,,. Considering A € Xj(T') as a weight
for H, the algebraic representation of H of highest weight A is

H(Zy) Gn Gn
Vi(L) = Indg ) ez A = Vi (L) @ Vi (L),

where N = (A1,...,\,) and X' = (A\py1,.., A2n).  Again, V(L) is the space of algebraic
fu : H(Z,) — L satisfying the H-analogue of (2.1).
The action of H(Z,) on V;#(L) yields a homomorphism

(Ix: H(Zyp) — Aut(V{(L)). (3.1)

We say a function F : G(Z,) — V(L) is algebraic if it is an element of L[G] ®, Vi# (L). Let

Indg(,z(”z)p)VAH(L) = {F : G(Z,) — V(L) | F algebraic, F(nghg) = (h)AF(g) (3.2)
Vng € Né(Zp),h € H(Zy),g € G(Z,)}.

This has a G(Z,) action by (v- F)(g) = F(g7)-
The following lemma says ‘algebraic induction is transitive’

Lemma 3.6. [53, §1.3.5]. There is a canonical isomorphism of G(Z,)-representations

G(Zp)

Indy =7,

V(L) = VA(L), F = [g— F(g)(idm)]-
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Proof. Evaluation at the identity idg € H(Z,) induces a linear map V(L) — L, and this
induces a map
i: LG @, VH (L) — L[G],

which we interpret as a map

i : {algebraic G(Z,) — Vi*(L)} — {algebraic G(Z,) — L},
Fr—=lg—= (Fl9)(idm)]-
If F e Indg(,z(‘"z)p)VAH (L), then a straightforward computation (as in [19, Prop. 4.8]) shows i(F)
satisfies (2.1). Combining, we see i restricts to a well-defined map

. G(Z,
i Indg @) V(L) — VA(L).

If i(F) = 0, then for any g € G(Z,),h € H(Z,), we have

[F(9)] (h) = [(M)AF (9)] (idm)

= [F(hg)](idn) = [i(F)](hg) =0,
G(Zp)
Qi(zp)VAH (L)
with a G(Z,)-subrepresentation of V(L); but the latter is irreducible, so ¢ is an isomorphism. [

so F = 0 and i is injective. The map i is evidently G(Z,)-equivariant, so 7 identifies Ind

3.2.2. Parahoric analytic induction modules. We have

H(Zyp)

~ G(Zyp)
= IndQ IndB,mH(Zp)

= (Zy) A

by Lemma 3.6. To define Q-parahoric analogues of A, in Lemma 3.6 we replace the algebraic
induction from @~ (Z,) with locally analytic induction. Let J, := Hp‘p Jp denote the parahoric

subgroup for @, as defined in (2.16). Let A? (L) denote the space of functions
[f+ Ty = V(L)) € A(Jp, VT (L))
such that
f(n"hg) = (h)xf(g) for all n™ € Ny (Zyp) N Jp, h € H(Zy), and g € J,.
Again restriction identifies AY (L) with A(Ng(Z,), Vi (L)). Let
DY (L) = Homeont (AF (L), L)
be the topological dual; this is a compact Fréchet space [19, §3.2.3].

Remark 3.7. Note that any n € N(Z,) can be uniquely written as a product

1

1 Y1,n+1
i Yn,2n

n=h-no= -
@ ‘ e 5 ’

1 1

of h € H(Z,) and ng € Ng(Z,), where z;j,y;; € Opp. Then for any f € AL the restriction
fln(z,) is locally analytic in the x;;, and y;;, (thought of as Z,-coordinates on N(Z;)) . On
the other hand, for any f € A? the restriction f|n,(z,) is a locally analytic function in the
Yij,o With coefficients in VAH . As V/\H can be realised as a space of polynomials in the z;; ,, one
sees that A? is an intermediate space between V) and AE . A precise description of the natural
inclusion A? C AL is given in [19, Props. 4.9, 4.11].

Notation 3.8. Since throughout we will only be interested in @Q-parahoric distributions, we will
henceforth suppress superscript Q’s and write A = A? and Dy = Dg\g.
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3.2.8. Distributions in families. Let Q C %Ci be an affinoid, for a fixed A, € X§(T). If A € Q
is algebraic, then by definition A1 € “//OQ and there is an isomorphism

of H(Z,)-modules [19, Lem. 3.8]. In particular, the underlying spaces of Vi and VA'Z are the
same, allowing analytic variation of the representation Vi as X\ varies in an affinoid of Wﬁ.
This is crucial for variation and is not true of any higher-dimensional affinoid neighbourhoods of
A. If we use B rather than @, the analogue of Vi is the 1-dimensional character A, which can
evidently vary in an affinoid subspace of the entire weight space #©.

The space Qo = {A\\;!: X € Q} is an affinoid in ”//()Q cwe.

Lemma 3.9. The character xq, : H(Zy) — Og given by h — [Xo = Xo(h)] is locally analytic.
Proof. This is proved in [19, §3.2.6] using [28, Prop. 8.3]. O

As xq, is a character of H(Z,), it factors through its abelianisation

de
H(Z,) =% (0F,)%,

so there exists a character (x¢,, x8,) of (O;p)Q such that

X0 (1, ha) = (xg, © det(h1)) - (x§, © det(hz)).
As Qg is a subspace of the pure weights, there exists
Wq, Z;; — 060
such that
X6, () - X3, () = wa, o Np/q()
for all z € Of, , and hence
XQo (h, h) = WgQ, © NF/Q(det(h)). (34)

If Ao € Qp, then evaluation at Ag sends wq, to wy,, as defined in Definition 3.2, so wg, interpolates
purity weights over .
Now define VI = V/\’Z (L) ®r Oq,, a free Oq,-module of finite rank, and a homomorphism

(Vo : H(Zy) — Aut(ViI (L)) ® OF C Aut(Vg'), (3.5)
h — (h)x, ® xq,(h).
This makes VT into an H(Z,)-representation.

Definition 3.10. Let A € Q(L), and let Ag = A\;' € Qo(L). Define a map sp,, : Og, — L by
evaluating functions at \g. This induces a map

" id®sp)\0 i 1 (3.3) o
spy i Vo ——— V(L) @ A" —— V37 (L). (3.6)
Since spy, © xa, = Ao by (3.3), this map is H(Zj,)-equivariant. In particular, VAT interpolates

the representations Vi as \ varies in  (where if A is non-algebraic, Vi := V{Ij\[}).

Choosing A, fixes an isomorphism Q == Qq, A = A-1A. This induces O = Ogq,, compat-
ible with specialisation maps. Under this we may define characters

XQ = Ar - XQo : H(Zp) = OF,

Wo =Wy, - Wo, : Z) — Of (3.7)

such that evaluation at A € ) sends xq to A and wq to wy. Henceforth we work only with €,
suppressing 2y, and implicitly any transfer of structure is with respect to this identification.
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Definition 3.11. Define Aq to be the space of functions
[f o = V3] € A(Jp, Vi)
such that
f(n"hg) = (h)af(g) for all n= € N (Zy) N Jp, h € H(Zy), and g € J,. (3.8)
Define Dg := Homeont (Aq, Oq). This is a compact Fréchet Og-module (see [19, Lem. 3.16]).

Remark 3.12. Asin [19, Rem. 3.18], if Q' C Q is a closed affinoid, then
Dq Roq Oqr = Dgqr.

As a special case, suppose ' = {\} is a single point, whence O = L is a field, of the form
Oq/my for my C Ogq the maximal ideal attached to A\. The map sp, : Oq — L is reduction
modulo my. Then we see

spx(Da) = Dq Qp, Oa/my = Dy(L).

In particular, Dgq interpolates Dy as A varies in 2.

3.3. The action of U, and slope decompositions. Fix any open compact subgroup K C
G(Ay) such that K, C J, (e.g. K = K(7)). Let © be an affinoid in %Q”, we allow Q = {\} a
single weight, in which case Oq = L. We have a natural left action of .J, on Aq by

(k*f)(g):f(gk)v kEJp’feAQageJZ”

inducing a dual left action of .J, on Dq by (k* u)(f) :== u(k™" = f). Thus Dq is a left K-module
(via projection to K,), giving a local system Zq on the space Sk as in §2.3.2. (For this to be
non-trivial, we need the centre of G(Q) N K K<, to act trivially. This holds by definition of the
action of K on Dgq, and since for Q sufficiently small, one has xo(Z(Q) N K) = 1 by Remark
3.5).

Recall t, = v(wp1,, I,). Note

tPNQ(ZP)tp_l - NQ(Z;D)~
For any f € Agq, define a function
tyl o f i No(Zy) = Vi

sending n € Ng(Zp) to f(tynty'). As H(Z,) commutes with t,, using (3.8) and parahoric
decomposition, Z, L% f extends to a unique function in Ag.

Let A, C G(Qp) be the semigroup generated by J, and t, for p|p. One checks (e.g. as in [81,
§3.1.3]) that the actions of J, and t, ' on Ag extend to a left action of AJ! on Ag. We get a
dual left action of A, on Dg by (0 * pu)(f) = (6~ = f). We then equip the cohomology groups
H.(Sk, Za) with an Og-linear action of the Hecke operators Uy = [Kt, K,] in the usual way.

Remark 3.13. To justify the notation, note the x-action on D, (L) preserves its natural integral
subspace (see [19, §3.2.5]). Also, the x-action on A, preserves the subspace V), so dualising we
see Dy (L) admits V\Y(L) as a -stable quotient. We thus obtain an induced *-action on V)Y (L).

On V)Y(L), we also have the natural algebraic --action of G(Q,) from §2.3.2. The * and
~actions of A, on V)Y(L) coincide for J, C A,, so give the same p-adic local system ¥,Y(L).

However, the actions of t, are different; analogously to [19, Rem. 3.23] one computes that
toxp=Atp) - (tp- 1), peVY(L). (3.9)
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The two actions induce Hecke operators Uy and U, on the classical cohomology, related by

'JZ:UEE(p) Z:L:l Aoyi U:

p

The isomorphism (2.21) is equivariant for the natural Uy,-operator on 7r][f and the operator U, on
cohomology, so the class ¢% from Definition 2.10 is an eigenclass with Uy-eigenvalue ay,. However

U, does not preserve integrality, whilst U, does. Because of this it is standard to write

Up :=U, = the usual automorphic Hecke operator on cohomology,
U, == U, = A(ty)Uy its ‘optimal integral normalisation’

Thus ¢% is a Uy -eigenclass with eigenvalue oy = A(tp)ay. As Uy preserves integrality, v, (ay) >

0.
The Uy and Uy operators of [38] coincide with ours. Their e-action on VY is our x-action.

Let t, = v(pl,, I,). As

() tiNo(Z,p)t," =1,

>0
we have ¢, € Ta * in the notation* of [19, §2.5], and (via the *-action) we get a Q-controlling
operator Uy = [Kt,Kp] on the cohomology. By §3.5 ibid., for any h € Qxo, up to shrinking
Q the Og-module H?(Sk, Zqo) admits a slope < h decomposition with respect to Uy (see [46,
Def. 2.3.1]). We let H2(Sk, Zq)S" denote the subspace of elements of slope at most h, and note
that it is an Og-module of finite type.

3.4. Non-critical slope conditions for Q. Let A € X5(T) be a pure dominant integral
weight and K as in §3.3. The natural inclusion of V) (L) C Ax(L) induces dually a surjection
Dy(L) — VyY(L), which is equivariant for the *-actions of A,. This induces a map

ra 1 HY(Sk, Z(L)) — H2(Sk, 73 (L)), (3.10)

equivariant for the *-actions of A, on both sides; hence by Remark 3.13, it is equivariant for the
actions of Uy on both sides.

Let # be a Q-refined RACAR of G(A) of weight A and h > 0. As H®(Sk, Z\(L))S" is a
finite dimensional vector space, the localisation H® (Sx, Zx(L))5" is the generalised eigenspace in
H?2 (Sk, Zx(L)) where the Hecke operators act with the same eigenvalues as on 7 (see §2.9). Abus-
ing notation, we drop the < h and just write H® (Sk, Zx(L))m, for this generalised eigenspace.

Definition 3.14. Let 7 be a Q-refined RACAR of G(A) of weight A. We say 7 is non-Q-critical

(at level K ) if the restriction of r) to the generalised eigenspaces

rx t He (S, DA(L))ms = HE(Sk, 73 (L))

7

is an isomorphism. If K is clear from the context we will not specify it.
We say 7 is strongly non-Q-critical if this is true for all K satisfying (2.20), and also with H?
replaced with H® (i.e., if 7 is non-Q-critical for H® and for H? as in [19, Rem. 4.6]).

Recall ¥ = HPIP Y(p) from §2.1. For p|p, let e, be the ramification degree of p|p.
Definition 3.15. For p|p, we say that 7, = (m,, o) has non-Q-critical slope if
ep - Up (a;) < mingez(p)(l + Aon — )\g,n+1)7

where oy = A(ty)ay. If this holds at all p|p, we say that 7 has non-Q-critical slope.

*As distributions in [19] are right-modules, all conventions are opposite to those here: see [19, Rem. 4.20].
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Theorem 3.16 (Classicality). If & has non-Q-critical slope, then it is strongly non-Q-critical.

Proof. This is a special case of [19, Thm. 4.4, Rem. 4.6], explained in Examples 4.5 ibid.. The
root system of G q, is a disjoint union, indexed by %, of copies of the standard root system Az, 1
of GLg,, and we denote by {B1,s, ..., f2n—1,, } the simple roots in the copy of Ag,_1 attached to
o € . The parabolic @) corresponds to the subset

Ag=A\{fp,:0€X}

of the set A of simple roots for G/q,. In the notation ibid., if a; = B, , with o € X(p) for a
prime p|p, we take t; = t,. Thus

Ui == U;, ’Up(Oéi(ti)) = 1/ep,

and At N) = (14 Ao — Aont1)/€p-

Thus Definition 3.15 gives precisely the non-critical slope condition of [19, Thm. 4.4]. Note the
level ibid. is arbitrary. Any differences in conventions are explained in [19, §4.6] (though the
reader is warned that the comparison of Uy and U, was computed incorrectly there; we are using

the corrected version in this paper). O

Remark 3.17. It is natural to ask if there exist 7 that are non-Q-critical (for some K') but not
strongly non-Q-critical. In the case of GLo, it is conjectured that a modular form is critical if and
only if its local Galois representation at p is split. If a Galois-theoretic criterion for non-criticality
exists more generally, then one would expect that non-Q-criticality should not depend on the

type or level of cohomology, and hence that non-@Q-critical implies strongly non-Q-critical.

4. Abstract evaluation maps

We now describe an abstract theory of evaluation maps, which are linear functionals on com-
pactly supported cohomology groups. Recall that H = Resp, ;z(GLy, x GL,), with diagonal
embedding ¢ : H < G. The underlying idea behind evaluation maps is to integrate compactly
supported cohomology classes for G over (coverings of) locally symmetric spaces for H, the so-
called automorphic cycles. The arithmetic importance of such a construction is that when we
start with a class attached to a RASCAR = (as in Definition 2.10), the resulting integrals take
the shape of relative global zeta integrals for H C G that we can relate to L-values of 7.

The constructions of [45, 38] treat evaluation maps for cohomology with coefficients in the
algebraic local systems attached to V'. In this chapter, we give a new construction that allows
coefficients in much more general local systems.

We describe the automorphic cycles, and their basic properties, in §4.1. Crucially, they have
real dimension equal to ¢, the top degree of cohomology to which RACARs for G contribute.
This ‘magical numerology’ allows one to integrate degree ¢ compactly supported cohomology
classes against automorphic cycles, and we make this integration theory precise, with general
coefficients, in §4.2. In §4.3, we finally show that our constructions depend functorially on the
coefficient system, and track their dependence on the level of the automorphic cycles.

In §5 we will use this abstract theory with classical cohomology groups — those with coefficients
in ¥, — to recover the evaluations of [38], and their connection to Deligne-critical L-values of
RASCARs. In §6 we use it to define distribution-valued evaluations on the overconvergent
cohomology groups H:(Sk, Zq), and hence to p-adically interpolate the evaluations of [38].

28



p-adic L-functions in Shalika families Barrera Salazar, Dimitrov and Williams

4.1. Automorphic cycles.

Definition 4.1. Let Ly C H(Ay) be an open compact subgroup. Define the automorphic cycle
of level Ly to be the space

Xiy = H(Q\H(A)/Lu L,

where Loo = Hoo N Koo for Hy := H(R) (note all intersections are taken with respect to ¢).
Note Zg(R) N Hoo € Z(R), so this is not the locally symmetric space for H. This is denoted
SH in [38], and is a real orbifold of dimension ¢ [38, (23)].

We choose a specific Ly, as in [38, §2.1]. Let K C G(Ay) be an open compact subgroup.

Definition 4.2. (i) Define a matrix £ € GLa,(AF) by setting £, =1 for all v { p and

&= (% ur) € GL2u(Ory)
for p|p, where w,, is the antidiagonal n x n matrix whose (¢, j)-th entry is d; p—j41.

(ii) For a multi-exponent 3 = (By)p|p, With By, € Z>o, we write

pB:wa*’ and tgzntf".

Fix an ideal m C O prime to p. Then we define

Lg =L@ ] Ly,
plp

where

(L1) away from p,
LW ={he H(i(p)) :h=1(modm)}

is the principal congruence subgroup of level m,

(L2) at plp,
Ly = H(Zy) N K, N &ty Kty 651

Let X := X1, be the automorphic cycle of level pP.
The ideal m will always be fixed large enough so that
L®) is contained in K N H(Ay), and (4.1)

H(Q) NhLgLS h™" = Zg(Q) N LgLS, for all h € H(A). (4.2)

By (4.2), X3 is a real manifold [38, (21)]. Changing m will scale all our constructions of p-
adic L-functions by a fixed non-zero rational scalar (captured in the volume constant 7,m of
Theorem 5.22 below); but each construction is only well-defined up to scaling the choice of
periods €2, so changing m yields no loss in generality. We fix m to be the minimal such choice,
dropping it from all notation.

By definition of ij" and (4.1), there is a proper map (see [6, Lemma 2.7])

1p: Xg — Sk, [h] — [L(h)éLD). (4.3)
The cycle Xg decomposes into connected components [38, (22)] indexed by

70(X5) = CCH(p"m) x €CH(m), (4.4)
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where the component of [(h1, he)] € Sk is given by the class
[(det(hq)/ det(hs), det(h2))] € mo(Xp).

For 6 € H(Ay), we write [0] for its associated class in my(X3) and denote the corresponding
connected component

Xplo] == HQ\H(Q)SLsHS /L L.

Remark 4.3. We give some motivation for these definitions.

First, note that we must use the coverings of locally symmetric spaces for H — not the locally
symmetric spaces themselves — as the map ¢ : H — G does not induce a well-defined map on
the true locally symmetric spaces. Indeed, the image of the centre Z5 (R) under ¢ does not land
in Z&(R); hence the need to quotient instead by (Z¢ N H)°(R). Also, unlike the true locally
symmetric spaces, this covering also has the correct dimension ¢, making the ‘magic numerology’
work for defining evaluation maps.

Second, the twisting matrix £ is of paramount importance to our constructions. It will be
essential in proving compatibility of evaluation maps as we vary the level 8, and thus to p-adic
interpolation (most notably in Proposition 6.12, via Lemma 6.2). Moreover, it plays a crucial
role in the evaluation of local zeta integrals at p (see Proposition 5.12 [38, Prop. 3.4]). Whilst we
do not make this explicit, underlying our later proof of p-adic interpolation is the following fact:
¢ is an open orbit representative for the spherical pair H C G, in the sense that B~ (Z,)¢H(Z,)
is Zariski-dense in G(Zy).

4.2. Abstract evaluation maps. We axiomatise the evaluation maps of [38]. Let K C
G(Ay) be open compact such that No(O,) C K, C J, for p|p, and recall A, from §3.3. Let M
be a left A,-module, with action denoted *. Then K acts on M via its projection to K, C Ay,
giving a local system .# on Sk via §2.3.2.

4.2.1. Pulling back to cycles. We first pull back under ¢5. As in [38, §2.2.2], there is a twisting
map of local systems

T8 gl — M
(h,m) — (h, ftg * )

where (*.# is the local system given by locally constant sections of
HQ\(H(A) x M)/LgL, — Xg, C(h,m)lz = (Chlz, £~ +m). (4.5)
On cohomology we get a map
T5ouy  Hi(Sk, M) — HU(Xp, st ) — HL(Xp, " A).

4.2.2. Passing to components. We trivialise (*.# by passing to connected components. Let
0 € H(Ay) represent [§] € mo(Xp). Define Xy := HS /LZ,. The congruence subgroup

Tps:=H(Q)NILgHLS ! (4.6)
C HQ)" == {(h1,h2) € HQ) : det(h;) € OrNEL}
acts on Xy (by left translation by its embedding into HZ). Further if ¥ € ' 5 then (67 yd)s €

Lg, so I'g s acts on M via
7V Hrgs = (67 18) p x m. (4.7)
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If [hoo] € Xp, write [hoo]s for its image in I'g 5\ Xy. We have a map

cs: HS, — H(A)
hoo — Ohoo,

which induces a map

Ccs . Fg’g\XH - Xﬁ[(ﬂ C Xﬁ7
[hools — [hoc],

also denoted cs. Pulling back gives a map of local systems ¢§ : v* 4 — cju* A .

Lemma 4.4. The local system cso* M on Tps\Xg is given by locally constant sections of
Lpo\[Xm x M| — D s\Xn, (4.8)
with action Y([hoo], m) = ([Yoohoo), Y ¥T5.s m). The map cj of local systems is induced by the map

s+ H(Q\[H(QULsHZ, x M]/LsLe, — T s\[Xar x M],
(C6lhoo,m) — ([hoo], £ x m).

Proof. In H(Q)\[H(Q)dLgHS, x M]/LgL?,, we have
(C(%homm) = C(éhoo;g * m)f = (Cé(hoo)vg * m)a

so the map is as claimed. To see ciu*.# is given by (4.8), let v € I'g s; then v = 665~ for some
¢ € Lg, and v #r, ;, m = £ m by definition. In H(Q)\[H(Q)dLgHS, x M]/LgLZ, we have

’7(6hooam) = (7f7006hoo7m) = ((% : ’Yoohoovm) = (5'Yooh00a€* m)

Thus
o
'7([h00]7 m) é‘ 7(5h007 m)
I - I
(['VOOhOO]v'V *Tg 5 m) <~ (5'700hoov Y *Tp.s m)
commutes, from which we deduce the action must be by (4.8). O

4.2.8. Trivialising and integration over a fundamental class. Let
My, ;= M/{m —~y*r,;m:me M,y gz}

be the coinvariants of M by I'g 5. Since I'g s acts trivially on Mr, ;, the quotient M — Mr, ,,
m +— (m)s induces a trivialisation map (over I'g s\ Xr)

COinVBﬁ : FB,&\[XH X M] — [FB,(S\XH] X MFB,E’
([hool;m) = ([hoo]s: (m)5),

and thus a map from cj¢*.# to the trivial local system attached to Mr, ; on I's s\Xg. We get
COiIlV/gﬁ : HZ(Fﬂ,g\XH, C;L*%) — HE(F@(;\XH, Z) ® MF5,5~

Finally, we integrate over a fundamental class in the Borel-Moore homology HEM (T3 5\ Xx, Z).
In [38, §2.2.5], a class
O5) € HP™(X500),2) = Z
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is chosen for each class [d], and we take
05 = 03(9[5]).

Cap product
(7 N 195) : Hz(Flgﬁ\XH, Z) =~ 7

induces an isomorphism

(7 N 95) : Hz(ng(;\XH, Z) ® Mpﬁyé = Mpﬁyé, ((25, m) — (¢ﬂ 05,m).

Definition 4.5. Define the evaluation map of level p” to be the composition

Byl : HE (Sk, M) — s HE (X" ) <25 HE (D 5\ X, 3" ) (4.9)

coinvg s

—Ne
H!(Dp,5\ X, Z) @ My, , —% My, ,.

4.3. Variation of M, ¢ and /.

4.8.1. Variation in M. The functoriality in M is the object of the following statement.

Lemma 4.6. Let k: M — N be a map of Ap-modules. There is a commutative diagram

¢ Evg{(;
Hc(SKaj/) MFB,s

+ i/ Ev;;{d i/
H.(Sk,A) Nr ,

Proof. Writing out the definitions, it is immediate that x induces a map on cohomology and a

map on coinvariants, and x commutes with each of the maps in (4.9) (compare [11, Lem. 3.2]). O

4.8.2. Variation in 6. We now investigate the dependence of the map Evg{(g on the choice of ¢
representing [0]. The main result of §4.3.2 is Proposition 4.9, where we define modified evaluation
maps independent of this choice in a special case.

For fixed 4, the action of £ € Lg need not preserve Mr, ,. Nevertheless:

Lemma 4.7. Let 6 € H(A) and ¢ € Lg. If §' = (6lho € H(Q)0CHS, N H(Ay) is another

representative of &, then:
(i) The action of £ on M induces a map

MFB,é’ — MFﬁ,sv

(m)g/ — £ (m)gl = (f * m)g.

(i) There is a well-defined map
(=] : Do\ X = T 5\ Xny

induced by
[hoo}é’ — K;olhoo]&
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Proof. (i) It suffices to check {m' —+'*r_ , m':m’ € M,y" € I'g s} is mapped by £ * — to
{m—vy*p,;m:me M,yeTgs}t If o €Tgs and m’ € M, then

Cxll = xr, ] = [0 m'] — [(UE) " '8) 7 5]
— [tem) — (hgh 671 ¢ COheo) g+ €5 1]
=m — (6_17(5)f KM =M — Y kD, 5 M,

where m = £+ m’ € M and v := (~14'¢. Note that v € H(Q), as (,7 € H(Q); that v, is in
HS, since it has positive determinant; and that ¢ € §Lzd~! by construction. Thus v € 'z 5.
(ii) The computation above shows

("'Tp5¢=Tps.
If [hoolsr = [Rl]s then [ho] = ~/[RL] for some 4" € T'g 5; then
[Cochoo] = ¢ ] = (MO e

SO
[C hoo)s = (€ Rl O

Combining Lemma 4.4 with coinvariants, the composed map of local systems is induced by

coinvg,s o cs H(Q)\[H(Q)(SLgHgo X M] /L@Lgo — Fﬁ’g\XH X Mpﬂ_j, (4.10)
(C6lho,m) — ([hools, (£%m)s).

Lemma 4.8. Let §' € H(Q)0(HS, N H(Ay) be another representative of [0], with ¢ € Lg. Then
for any class ¢, we have

0+ Evy's (¢) = Evis(¢) € Mr,,.
Proof. Write §' = (§¢ho with ¢ € H(Q), heo € HS,. By Lemma 4.7, we may define a map
(KM =] x [0% =) : T \Xur x Mr, ,, —> T s\Xu x Mp,
given by ([hoo]ss (M)sr) = ([Clhoo)s, (€ m)s). We claim there is an equality of maps
([ =] % [€% =]) o [coinvg 5 0 ¢j/] = [coinvg s o c}). (4.11)

To see this, note that as § and ¢ are both trivial at infinity, heo = (I}, s0 [hoohly]s =
(¢ =]([R)se) for all B, € HS . Then (4.11) follows from commutativity of

. *
coinvy s/ 0cy,

(780 m)

(IWsrs (€ xm)s)) € Tas\Xu x My,
id 1[4;1]x[2*] l[c;l]x[é*]
(3 G ey ) =22 (Bt (00 m)s) € T\ Xar x M,
Note pullback by [¢(;;!—] induces an isomorphism
M (Dp,6\Xir, Z) = BN (D0 \ X1, Z)
that by definition sends s to 6s.. In particular, on cohomology we get a commutative diagram

t [C;l_]*
HL(T,50\Xm, Z) =

k

He(T,6\Xm,Z) - (4.12)

,/95

Z
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Then we compute that

£ [Evé{&(qﬁ)} L% [(—=N0s)ocoinvg 5 o cs oTg 0 Ls(e)]
(—N6s)o ([Co_ol—]* X [ % —]) o coinvg s © 5 © T4 0 L;}(¢)]
(—

N s) ocoinvg 5 0c5 075 0u5(¢) = EV%&(@S),

where the second equality is (4.12) and the third is (4.11) combined with (4.10). O

Proposition 4.9. Let N be a left H(A)-module, with action denoted *, such that H(Q) and
HS, act trivially. Let k : M — N be a map of Lg-modules (with N an Lg-module by restriction,).
Then

Evg/l[’;] =0 % [/{ o Evgﬁ} :HL(Sk, #) — N

is well-defined and independent of the representative § of [d].

Proof. As T's s C H(Q) acts trivially on N, & factors through M — Mr, ; — N, so ko Evé/{(;
(hence Evg[g) is well-defined. If

8" = (8lho € H(Q)OMHS, NH(Ay),
then
Evg/{[’;,] =6« (H o Evg/{ﬁg,) =00 % (/{ o Evg/{é/)
= 5% (n o [E—l N EV,Q/,I(SD = § % (HOEVIB\/{(S) = Evgf[;]
In the second equality we use that ¢ and he act trivially on NV, and the third is Lemma 4.8. [

4.8.8. Variation in . We now investigate how evaluation maps behave as 3 = (3q)q|, varies.
Fix plp, and define 3 = (8g)q)p, where 8, = B, + 1 and B; = 3, for q # p. We have a natural
projection

prg, : X — Xg,

inducing a projection
Prg, - mo(Xp) = mo(X3).

Fix 6 € H(Ay) and a set of representatives D C H(A[) of the set prg’}]([é}) C m(Xgr). For
each n € D there exists ¢, € Lg such that n € H(Q)d¢,,HS,. Via calculations directly analogous
to those of Lemma 4.7, there is a map

MF/&’,n — .Z\frﬁy57 (m)n — 577 * (Tn)77 = (gn * m)g.

The action of t, € A, yields an action of Uy on H.(Sk,.#). Then we have the following direct
generalisation of [38, Thm. 2.2] to general coefficients (cf. [11, Prop. 3.9]):

Proposition 4.10. In the notation of the previous paragraph:

(i) For each class ® € H.(Sk, .#), we have

[EV%(; o U;} (@) = Z 0y * Evg{m(@).
nebD

(ii) Let N and k be as in Proposition 4.9. If B, > 1, then as maps H.(Sk, #) — N we have

M,k __ M,k o
> Evgpy=Evgigoly.
mleprs L (18]
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Proof. We follow closely the proof of [11, Proposition 3.4]. We recall the definition of Uy from
§2.3.3 (and fix simpler notation in this case). Recall t, = «(wy1,, I,), considered in G(Ay) by
taking 1 in the components outside p. Let

Ko(p)=KnNt,'Kt, and  K°(p)=t,Kt,'NK,
and denote the corresponding projections
pr;: SKD(p) — Sk and pry: SKO(p) — Sk.
The action of ¢, on M induces a morphism
[tp] : Heo(Sko(p), ) — He(Sko(py, A ),
induced by the map (g, m) — (gtp_l, t, * m) on local systems, and then by definition we have
Uy = Tr(pry) o [tp] o pry : HL(Sk,.#) — H.(Sk, #).
We give an analogue over automorphic cycles. Following the definition of Uy we introduce maps

L%  Xg — SKO(p)7 [h] — [L(h)ft’g],
o Xp — Sos ] [uh)EL)),

which by definition fit into a commutative diagram

et
SK <~ SKO(p) : SKo(p) SK (4.13)
Xs . Xp

Note that the left-hand quadrilateral is Cartesian.
The action of t, on M induces a morphism ¢}, .# — (13)*.# of sheaves over Xp/, giving a
map
[tp] - He(Xpr, 1 ot ) — He(Xpr, ()" ).

Now define the analogue of U, on the cohomology of the automorphic cycles by
Ug = Tr(prg ) o [tp] : HA(Xpr, 1yl ) = HL(X g,y ot ) — H(Xp, 154

From (4.13), the definition of Uy, and the fact that 8, > 0, we get another commutative diagram

o

U,
HE(Sk, ) 2 HE (S, #)

ibg/ lLE
UO

HE(X/% LE’%) 4"> Hé(Xﬁv LE%)

Tracing back each step of the construction of the evaluation maps, and using Lemma 4.8 in the
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bottom square, we obtain the following commutative diagram, completing the proof of (i):

U°

HY (X0, o5 ) - HE(Xg, v5.2)

T;, TE
Tr(prg,,)

HE (Xpr, 0" M) o H (X, " )

Bney, <5
t * ok Tr(prﬁ7p) t * %
EBWGDHC(Xﬁl [T’Lan %) Hc(Xﬂ[(ﬂ?céL %)
@y (=N, )ocoinvgs , (—NBs)ocoinvg s
ZneD(e"*i)
EBT]GDMFL-}’" MFﬁyﬁ;'
Finally (ii) follows from (i) directly following the proof of Proposition 4.9. O

5. Classical evaluation maps and L-values

Let K C G(Ay) be an open compact subgroup as in §4.2. Now we take M = V\Y(L), with A,
acting via the x-action defined in §3.3. We now rephrase the classical evaluation maps

EXY T HL(SK, 73 (L) - L CQ,

of [38, §2.2] in the language of §4. We give two main applications of these classical evaluation
maps: firstly, they provide a criterion for the existence of a Shalika model (Proposition 5.15);
and when such a model exists and K = K (7), they compute classical L-values (Theorem 5.22).

We use an opposite convention to [38]. They take 7 to have weight AV and use coefficients in
V3. Our choices mean we replace w from ibid. with —w, and p“ ibid. with .

5.1. Classical evaluation maps. We recap [38, §2.2]. The p-adic cyclotomic character is
Xeye : FX\AL — Z (5.1)

y— sen(yoo) - 17| Neyq(yp) = [ [ sen(wo) - lusl- [ Nro/a, (0s):
oED plp

This is the p-adic character associated to the adelic norm (e.g. [16, §2.2.2]), and is trivial on
FX°.

Definition 5.1. For (ji1,j2) € Z2, let V(i j») be a l-dimensional L-vector space with H(A)-
action
(h1,h2) v = chc[det(hl)jl det(hg)jz]v,

for hy1,hy € GL,(Ap) and v € Vé.{hh).
of H of highest weight (j1, ..., j1, j2, ..., j2). Note that H(Q) and HZ, act trivially on V(’;Il ) For

(¢1,42) € Lg, as | det(¢;)¢| = 1, we have

This is the set of L-points of the algebraic representation

(61, 62) # v := Npyq [ det(t ;)" det(2,)2]v.
The following branching law for H C G gives a representation-theoretic description of Crit(\).

Lemma 5.2. Let j € Z. We have j € Crit()) if and only if
dim,(Hom gz ) (Vy', v(l;{_w_j))) =1.

Note that since the *- and --actions of H(Z,) on V, coincide, there is no ambiguity here).
P A

36



p-adic L-functions in Shalika families Barrera Salazar, Dimitrov and Williams

Proof. By [45, Prop. 6.3], we know 0 € Crit(A) if and only if
dimp,(Hom gz ) (Vy', V(SI»—W))) =1.
Note L(m,j + %) is critical if and only if L(r ® | - |, 3) is critical. Let
A=A+5(1,..,1),
of purity weight w + 2j; then j € Crit()\) if and only if 0 € Crit()), and in this case
1 = dim, (Homy(z,)(Vy', Vi _w_2j))

= dimL(HomH(zp)(VAVv Vé{—w—j)))' -

Recall the map
750yt Hi(Sk, 73Y) — HL(X g, 7))

from §4.2. For j € Crit()), fix a basis sy ; of Homp(z,)(Vy, V(I;I ). This induces a homo-

—w—j)
morphism
Fxg - He(Xg, 0 93) — He(Xp, %))
where “//(f_w_j) is the local system defined as in §2.3.2. Let 6 € H(Af). As in §4.2, applying

H

(—Nés) ocoinvg s o c; and choosing a basis u; of V(j’_w_j) gives a map

HE(Xg, 91, ,) o

J,—w=13)

He(Ps,6\ X1, Z) @ V(|

J,—w—7j)
(7005)®id H
Vi —w

a 2L

Then in [38, (33)], the authors define
Eg”\g' = (=N 6;) ocoinvg 500 (K )« OTh O L.

The choice of basis u; of vH

(r—w—1) identifies V(ffwfj) with L, and we get a map Iiij of H(Z,)-

modules defined via
KS,j V(L) — L, k(1) = k3 (1) - u; forall pe VY (L). (5.2)

As I'g 5 acts trivially on V(?_W_j), k., and k3 ; factor through (Vy/(L))r, ;. It is easy to see that

Ka,; commutes with restricting to components, passing to coinvariants, and integrating against
the fundamental class. We deduce the following description of 5%";" via §4.2:

Lemma 5.3. We have Eé’:g' = k3 ;0 EV‘B/?;.
Recall from [38, (33)] the map
ENVs) = 0% €55 = Xeye (det(5]6, 7)) €LY,

is independent of the representative ¢ of [] € mo(Xg). This also follows from Propositions 4.9,4.10.

Recall
mo(Xg) = CUH(p°m) x €} (m)

from (4.4). Write pry, pry for the projections of mo(Xg) onto the first and second factors respec-
tively, and let prz denote the natural composition

pry : GUL(pPm) x GUE(m) = CUL(p m) — GUL(pP). (5.3)
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Definition 5.4. Let 79 be any finite order character of ¢¥}(m), and x € ¢¥L(p”). Define an
no-averaged evaluation map
EXW HL(Sk, (L) — L

by
gre= X ' erno)

[slepry ! (x)

In [38] this is denoted 5;3")1, where 17 = 1| - |¥; as later w will vary whilst 7y will not, we continue
to use a superscript 7 instead of n throughout, with w implicit in the source.

Let x be a finite order Hecke character of conductor (exactly) p? for B/ = (Bp)plp- Let
Bp = max(B},1) and 3 = (By)pp- Then y induces a character on 6¢f(p”). Let L(x) be the
smallest extension of L containing x(¢¥4(p”)). For j € Crit()\), define

g =% X &R« HUSk, K (L) — L(x), (5.4)
xE%’Z;(pﬁ)
b S0 x(prs(0]) mg (pra(l0]) - (6 [65, 0 BV ()] )
[6]emo(Xp)

Remark 5.5. Summarising, 5;;”’0 is the composition

J,w
O
N

PEvV =10 x)lx
HE(Sk0, 77) 2 W), DL P2 )
]

(9] x
7m0
EBSLLX

where the sums are over [§] € mo(X3) or x € €¥L(p”), and Z° is the ng-averaging map

v 8%k 5 (v)

2 — Do g (pra([3]) - g
[8epr; *(x)

5.2. Compatible choices of bases: branching laws for H C G. Let j € Crit(\). The
map 5%"0 depends on choices of bases

Il

H H
uj of Vi _y_jy =L and k,j of HomH(Zp)(V)\V(L),V(j’fwfj)),
which we combined into a single choice of non-zero £3 ; in (5.2). At present, we have made a
separate, independent choice for each j. For p-adic interpolation it is essential to make all these
choices compatibly. We now do this via branching laws.

5.2.1. Idea: critical integers via branching laws. Dualising Lemma 5.2 gives a reinterpretation
of the set Crit()) in terms of branching laws for H C G, describing characters of H that appear
in Vy|g with multiplicity 1. For each j € Crit(\), we obtain a line V(ilijﬂ) C Vialg. Our key
idea for p-adic interpolation is to reinterpret this again in terms of smaller groups; instead of
considering branching laws for H C G, one can consider branching laws for G,, = Resp,./z GL,, C
H, embedded diagonally. Indeed, recall A is pure with purity weight w, and V/\H is the irreducible
representation of H of highest weight A; then as G,,-representations we have

Villa, 2 Vim @ Vi (5.6)
=~ Vi@ (V7)Y @ (Npq o det)”,
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recalling X' = (A1,...,\,) and X' = (A\yy1,...,A2n).  As V5 @ (V,5")Y contains the trivial
representation with multiplicity 1, V|, contains (Nz;qodet)* with multiplicity 1. In Notation
5.6 and Lemmas 5.7 and 5.8, we show that the #Crit()\) different lines V(Iijwﬂ) in Vy|g (given
by Lemma 5.2) can all be collapsed onto this single line in VAH |, . Choosing a generator of this

single line thus allows us to align generators of the distinct lines V2 for j € Crit(A).

(=gw+4)
5.2.2. Passing from H C G to G, C H. Let j € Crit(\), and
kg € Hompz,y(VV(L), V)
and
U5 € Vii-wei)

be auxiliary bases. We have a dual basis

\ H ~ H \%
uj of Vi) = (Vimw—i) "
Dualising ) ; gives a map

R V) — (WD) = VA(L)

of H(Zp)-modules. Then rY ;(u}) € VA(L) generates the unique H(Z,)-submodule isomorphic
to V(Ifj,W_H,) inside Va(L)|x(z,)-

G(Zp)

Notation 5.6. Viewing ry ;(uy) € VA(L) as an element of Indg= 7 |

VH (L) by Lemma 3.6, let

Let

Lemma 5.7. (i) For each (§ ) € Nj(Zyp), we have
) (1)1 = [Neyq o der()P (50, o ).
(ii) The vector Uﬁ{j € VH(L) is non-zero.
Proof. (i) For (§ 1) € N (Zp), we have

kX, () 18 )] = w3 ) [(K ) (6 1) (X7 )]

where the last equality follows by (3.2). Moreover, (X' ) € H(Z,) C G(Z,) acts on x3_;(u))
by right translation, and IiX’ ;1s H(Z,)-equivariant, whence we see

SN 1D (7 )] = (7)) ) 16 1)

using that uJv ceVH Combining these equalities proves (i).

(=gw+j)
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(i) Suppose vi’; = 0. By (i), we see

HX,j(u;'/”NS(Zp) =0.

Since N (Zy) is Zariski-dense in Ng(Z,), we deduce «Y ;(uj') vanishes on Ng(Z,), hence on J,
by the parahoric decomposition; but by Zariski-density of J, C G(Z,) this forces n\i J(u;/) =0.
This is absurd by its definition. O

Alternative choices of k) ; or u; scale vf,j by L*-multiple. As vf\{j is non-zero, we see choosing
kx,; and u; is equivalent to fixing a basis of the line L - vf{ ;- This line is independent of j:

Lemma 5.8. (i) Let h € G,,(Z,). Then
("3 ))y - vxy = (Nryq o det(h))" v,

(i) The line L - vf’j C V(L) is independent of j.

Proof. (i) By definition: (-) acts on &Y ;(u}) by left translation; the --action of H(Z;) on
ry ;(uy) is by right translation; and (hy, ha) € H(Z,) acts on uf by Np/q(det(hy) ™7 det(hg)"*7).
Then

In the first equality, we use the transformation law from (3.2) for Y ;(u)) € V) (via Lemma
3.6).

(ii) As after (5.6), the restriction Vi |g, contains (Np/q o det)" as a unique summand. This
summand visibly has no dependence on j, but by (i), for each j it coincides with L - vfi i O

Thus evaluation at (1) collapses all the lines V(Ifj’wﬂ) C Vi|m onto the same line in V|, .

5.2.5. From G,, C H back to H C G. We now use §5.2.2 to align our initial choices of &5 ;.
Notation 5.9. Fix a generator v of (Ng/q o det)” C Vi|q,. We take
vl e VHE(Or)
optimally integrally normalised (in the sense that w  'vi ¢ VH(Oy1)).
Definition 5.10. Using Lemma 5.8(ii), rescale xy ; and u; so that
ofl; = (-1
Then let &3 ; : Vy'(L) — L be the map determined by the property (5.2).
From the definitions, and using duality, we can describe &5 ; as the map
K, V(L) — L, (5.7)
p— plry ; (u)].

now give an alternative description of &3 j better suited to p-adic interpolation.
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Lemma 5.11. (i) For each j, there exists a unique
[vx5 : G(Zp) = V(L)) € VA(L)

with
o [(5 X)) = (=1)9 [N 0 det(X)) ( (X)), - f) (5.8)

for (57) € NS(ZP)-
(it) For (hi,he) € H(Z,), we have

(hl hz) “UNG = NF/Q[det(hl)_j det(hg)w-i—j]v)\’j.

(iii) The map
ng’\,j : V/\V(L) — L

from Definition 5.10 is given by p+— p(vy ;).

Proof. (i) We take
Uy = /iXJ(u;/)
Then (5.8) is exactly Lemma 5.7(i). Note the values of vy j on N, (Zy,)H(Z,) Ny (Zy) are deter-

(Zy) VH(L); and this is Zariski-dense in

mined by (5.8) and the transformation property of IndQ, (Z)

G(Z,). Hence vy ; is unique with this property.

(i) Since Y ; is H(Zj)-equivariant and u) € V(Ifjmﬂ), we compute that

(" ) - ons =855 (") - 05)

= NF/Q[det(hl)_j det(hg)w-"_j]v)\’j.
(iii) This follows directly from (5.7). O

5.2.4. Comparison with previous work. In [38, (40)], the authors choose a lowest weight vector
vo € V/(L), and use this choice and Lie theory to define an integral lattice

V,\V(OL)DJR C V(L)

(which may be different from the lattice VA(Op) defined in §2.2). For j € Crit()), they construct
a map

H?JR : V/\V((’)L)DJR — V(f_ (OL) = OL,

w—j)
normalised so that H?JR(f -vg) = 1 (which they prove is possible in results analogous to §5.2.2).

This map is denoted kS bid.

j
We freely identify H?JR with its scalar extension V,'(L) — L. By Lemma 5.2, for each

Jj € Crit(A) the maps &5 ; and kR agree up to L*-multiple. Fix jo € Crit(\); we can align the

choice of vy (and hence the integral structure VyY(Or)P'®) in [38] so that 3 ; = &7’%. Then:

Proposition 5.12. For each j € Crit(\), we have k3 ; = KPR

DJR

Proof. Dualising the map £;°", and evaluating at 1 € Of, one obtains an element

U;-DJR € Vi (Op)PR such that /@?JR(M) = M(U?JR).

Moreover

DJR H
v € ViSiwey € Valm,
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SO ’U;»DJR is an L*-multiple of vy ; from Lemma 5.11. In particular, there exists ¢; € Or, such

oDIR DJR
j j
former. By the above and Lemma 5.11(iii), it suffices to prove that ¢; = 1 for each j € Crit(\).

that either vy ; = ¢; or c;vy; = v, . We assume the latter; the proof is identical for the

By assumption ¢;, = 1.
By [38, Prop. 2.6], for all j € Crit(\), p € V,Y(OL), and 8 € Z>1, we have

pl(€71E) % oPR) = p[(€71E) % 0P (mod pPOL).

o]

As this holds for all u, by considering Op-bases we deduce

(f_ltg) * [U?JR — v;%JR] S pﬁV,\((’)L)DJR.

Any two integral lattices in V(L) are commensurable, so there exists By € Zx such that

(€ * [0P"R —0RR] € p” RV (Or),

for all 8 > By, and in particular, our normalisations ensure we have

(€71p) * [ejung — vage) € P77 PVA(OL). (5.9)

Thus, considering this element in Indg(,z(’)z)p)VAH (L) via Lemma 3.6, for all g € G(Z,) we have

(E718) * [ejony —vago) (9) € PPV (OL). (5.10)

Recall v{f € L[H] (from Notation 5.9) is polynomial in the coordinates of H; after possibly

enlarging [y, we may assume that wﬁovf\l € Op[H], that is, the coefficients are all integral.

As the action (-)y on vi is by right-translation, one deduces easily that if h, b’ € H(Z,) with
h = A’ (mod p?), then

(hyx - ool = (W)x - wPol (mod p? VI (0L)),

(h)x - v = (W) - v (mod p?~PoVE(OL)). (5.11)

Now, by §3.3 note the action of 5’175? on V) is induced by the action
B o 5 - 4P Xw
B = [ (N7 = (57) (bad) = (u) (570 (5.12)
on (§7) € Nj(Zp). In particular, we see

(€71 + or )3 ) = (M avng (3 7147%00 ) (by defn. and (5.12))

= (1) (Np/q odet(—1 + PP Xw,)) <(71+pﬂXwn wn)>A ol

= (7w, )y ok (mod p?~ PV (Or)) (by (5.11),

which is visibly independent of j. Substituting this into (5.10), we obtain

(e; = 1) [{(1w. )y o] € P77V (On). (5.13)
As
(Thw )a vl £ 0,
and this holds for all 8 > By, we deduce ¢; = 1, completing the proof. O
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In particular, all of our choices, and hence the maps 5;;”707 coincide with those in [38], so we
may freely use the later results ¢bid. on the specific values of 5%”0.

Remark 5.13. Proposition 5.12 would fail without the scalar (—1)%7 in Definition 5.10. If we
had defined £ = (§ 7, ) when defining Evj's, we would not need this scalar. However we choose

&= ((1) o ), as chosen in [38], for compatibility with their results.

We now compare with the alignment of Jiang—Sun—Tian, who in [54] proved period relations

at infinity for RASCARs. They fix a highest weight vector v, € VY, let u = ( ! - ), and

Wn
normalise the branching law’ anT VY — Vj{‘r_w_j so that /i}IST(u ‘Uso) = 1. Again, note all the

H‘]]-ST depend only on the choice of vy, which is well-defined up to scalar. Then we have:

Proposition 5.14. We may choose vy such that

/ii’j = (det wn)jd . anT

for each j € Crit(X).

Proof. By Proposition 5.12 it suffices to show m}IST = (det wy, )7? - /{?JR. As both lie in the same
line, we know at least there exists C; # 0 such that K?JR = CjanT. We want C; = (det wy,)79.
Note that

e= (P )u(by) (M ey, ) wen (5.14)

Note way, - vy is a highest weight vector. Thus any ¢ € T acts on wa, - vg as AV (¢), and any n € N

acts trivially. Letting both sides of (5.14) act on vy thus gives
f *Vy = )\\/ [(1n —2-t.q, )} (1 W, ) U - Wop - Vg = (detwn)‘”d (1 Wa ) U+ Voo,

where we define vy, = (det w,,)""I\Y K In )} - Wagy, - Vg. Then

—27 11,

1= /{?JR [€ - vo] = det(wn)de?JR (YW, ) u-veo] = (det wn)*jdn]j)JR [ Vo)

n

= (det wn)fijjligST[u Vo] = (det wn)fijj.
For this choice of vy, we have C; = (det wy, )¢, as required. O

5.3. Non-vanishing of evaluation maps and Shalika models. We now show how classical
evaluation maps can detect existence of Shalika models. Let m be any RACAR with attached
maximal ideal m,; C H’ as in §2.4. Let A\ be the weight of 7, with purity weight w.

Proposition 5.15. Suppose there exists ¢ € HL(Sk, 73 (Q,))&, such that
Ei™(9) £ 0 (5.15)
for some x,j and ng. Then m admits a global (n,)-Shalika model, where n = gl - |".

Proof. By Proposition 2.3, there exists a unique ¢ € 77;( mapping to ¢ under (2.11). This

€

o of generator of

isomorphism depended on a choice =

o € KS,
Ht(gOO,KOO; Too & V)\V(C)) C [At(gw/too)v ® Moo & V/\V(C)] )

fTo translate between this statement and ours here: observe that the torus defined in [54, (3.14)] is uTu ™",
where T is the usual torus; so the space they denote (F/ )" is u-(V,Y)" here. But the space (V)" of N-invariants

is the highest weight space, so their vg is u - voo here.
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where to, = Lie(T) and the inclusion is [26, 11.3.4] (see also [45, §4.1]). Fixing bases {w;} of
(goo/teo)" and {ey} of VY(C), there then exist unique vectors

Pooia € Too such that 2 = Z Zwi ® Voo ia @ €as
i «

where i ranges over tuples (i1, ...,%;) and w; = w;; A -+ Aw;,. Define
@;,a = spcioﬁ,oz ® Pf-
By [38, Prop. 4.6], we see there exists an automorphic form

5= DD oy Fha €T,
i «

where the scalars af , ; € C depend on £J ;, and with i and « ranging over the same sets as

above, such that
i ER O] = M) [ (het)) |detlih ) e dn
X3[d]
Now arguing exactly as in the proof of [38, Thm. 4.7], we have an equality

i [ (9)] = [vpm-w,’f) HNF/Q(p)"2B“] U+ 5 @xm)s (5.16)
plp

where
e Ypm is & non-zero volume constant defined in [38, (77)],
o ¢ = (Et)) - g5, and
o U is the period integral defined in [41, Prop. 2.3].

Now, as in the proof of [41, Prop. 2.3], we may write

U(i+3 ¢ xn) (5.17)

-/ [ Lo T )] () o e m)dh} (@) det(@) e,
Zn(Q\Zn(A) | JH(Q)\H®

where Z,, is the centre of Resy/q GL, and

HO = {(hl,hg) S H(A) : \det(hl)\ = \det(h2)| = 1}.

By (5.15), both (5.16) and (5.17) do not vanish; hence the inner integral of (5.17) also does not
vanish. But existence of such a ¢, x and 7 implies 7 admits an (7, )-Shalika model by [41,
Prop. 2.2]. O

5.4. Local zeta integrals. In this and the next section, we state and prove Theorem 5.22,
relating evaluation maps to L-values for our 7. This is a compilation of results from [41, 45, 38,
54, 13]. First we relate to local zeta integrals in a general setting.

Let 7 be a RASCAR of G(A), and x = [[x., a Hecke character of F of conductor p”.
Recall @fz’e : SZ; () = HL(Sk, 3 (Qp))&, from (2.21), depending on a choice ZS, at infinity.
Attached to Z¢ and j € Crit()) is a ‘local zeta integral’ (s ;(ZS, ), the quantity Po ;(ZS) from
[54, (4.15)]. Recall the finite analogues (,(—) from §2.6. Let

OyeXso = [(=1) Xo (=106 (= 1)]es € {£1}7.
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Lemma 5.146. Let Wy = @,W, € SZ; (mp). If € # (XyeXN) oo, then 5;’"0(@Z7E(Wf)) _
If € = (XlyeXT) oo then

S (si’no(@fjﬁ(wf))) - [%m.A(tg) HNF/Q(]J)7125P:|

plp

% Cog(E) TT (i + 1/2Woxe) - TTG (5 1/2Wo (= €6%) %)
vtpoo plp
Proof. When € # (x,.X7) oo, we deduce £ (¢%) = 0 as in the proof of [38, Thm. 4.7].
Suppose the sign condition is satisfied. We start from (5.16) above, where ¢’ = Etg "5 ; in the
notation op. cit, with ¢ = @K(Wf) Note S} (¢') = W, ; @[ty - W] for some W, ; € 8 (To0)-
Now [38, §4.1.2] shows that U(j + 1/2,¢’, x,n) equals the product of local zeta integrals, as
required. O

5.4.1. Local zeta integrals at infinity. At infinity, the following is a combination of Sun [77,
Thm. 5.5], Jiang-Sun-Tian [54, Thm. 3.12], and Geng [42, Thm. 8.6].

Theorem 5.17. Up to rescaling the basis elements 25, € H (goo, K35 Too @ VY (C))S, if € =

(XZyeXM) oo, we have
Coo,j(Ego) =i, L(Too ® Xoo,J +1/2).

Proof. For each j € Crit()), Jiang-Sun—Tian construct a zeta integral CJST( ¢.) at infinity, and
show it arises from an evaluation map/modular symbol process as above. Their main result is
existence of £(Too) = [[,cx €(7s) € {£1} such that the quantity

CIST(He )

y . Nl
T Llrm X Xoor] + 1/2) () (5.18)

is non-zero and independent of j when € = (xl,.x7)oo- Further, in [42], Geng shows that
e(m,) = det(w,) for all o, s0 &(7s )7 = det(w, )%

The map CJST differs from (. ; only in the choice of branching law, so by Proposition 5.14
Coo,(E50) = det(wn) ™ - (77 (E5)- (5.19)

Combining (5.18) and (5.19), we see

(o0, (ES)
- : 2
1797 [T X XoorJ +1/2) (5.20)

=€

is non-zero and independent of j. Now note (s (25 ; so by rescaling

007

) scales linearly with =

the latter, we may assume (5.20) equals 1 for some jo, hence for all j, as required. O
Definition 5.18. We let e (7, x,7) == 17" L(7oo @ Xoo,j + 1/2).
5.4.2. Local zeta integrals at p. Recall from §2.8 that we work in two local settings at p:

(C2), mp is parahoric spherical admitting a Shalika model, 77, = (7, ) is a Shalika Q-refinement,
and W, € Sz‘;( J”)[UP — o] a generator.

(C2)p m = Indgﬁp is spherical, satisfies the hypotheses of Proposition 2.7, and 7, = (m,, ap) is
the Shalika @Q-refinement from that result.

We will assume (C2), throughout, and (C2’), when considering unramified characters. For a
quasi-character x, of F,*, let 7(xp) be the local Gauss sum, normalised as in [13, §9.2].
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Definition 5.19. Let s € C. If y, is ramified of conductor p?», let T'(xy) = 7(xp)" and

- Bpn erﬂfl +dpn s—n2_1 qy
6;3(777)(;3)::(1;;‘0( 2 2) ”( 2 2). b —.
(gp —1)

This depends only on 8, and s, but we denote it this way for later consistency.
If xp is unramified and (C2'), holds, let T'(x,) = x(wp) "% and

2 —1 -1
- — q‘SF"(S_%_%) ) qy - ﬁ 1—0,:xp (@p)ap 2 .
(QP - 1)77, 757l

=t 1 — Oy ixp () ap

Proposition 5.20. (D.-Januszewski-Raghuram; B.-D.—Graham-Jorza-W.).
Let W, be a generator of SZ’; (W;,]")[[Up —ap].

(1) If (C2), holds, then for all ramified quasi-characters x,, we have
. -5
Cp (5§ Wp(* : §t§p)’ Xp) = T(Xp) ’ 6;:(7", X8 — %) ’ Wp(tp ") (5.21)

(i) If (C2), holds, (5.21) also holds for unramified x,.

Proof. Given (C2),, (i) is [38, Prop. 3.4] (with a corrected power of g,; see Appendix (2)).

If (C2'), holds, (ii) was proved by the present authors with Graham and Jorza in [13, Prop.
9.3]. The only differences are that instead of £ = ((1) 1“;:1) here, there is used v~ = ((1) P ); but
we can compare the two integrals by noting that the integrand in [13] contains

O () = ) G (7)) )

The change of variables h <> —hw,, removes the factor of x,(det(—wy)) appearing in [13], and

(7“’" w) disappears by parahoric invariance. In [13] the term W, (t, 5") is denoted Fy(way,)

and taken to be 1 (see §9.1 ibid.), so does not appear there. We also rearrange using o, =
2

% /29p,n+1"'9p72n(wp)- u

Remark 5.21. Proposition 5.20(i) holds assuming only 7, is regular, rather than Shalika (i.e.
without demanding that W(tg‘s) # 0). In particular if 7, is regular and ¢, (s, Wp(—{tf‘“ ), Xp) #0
for some ramified x,, then this result implies 7, is Shalika.

5.5. Cohomological interpretation of L-values. Now suppose 7 satisfies Conditions 2.8
or 2.8, and recall

£ = KD /i, (08

T

from Definition 2.10. It is important that we now work at level K = K(7). The results from
[41, 45, 38, 54, 13] combine to show:

Theorem 5.22. Suppose 7 satisfies Conditions 2.8'. Fir e € {+1}*. Let x be a finite order
Hecke character of conductor p? , with 3 = (Bp)plp with each B, > 0. Let B == max(By, 1). Let
J € Crit(X). Then if € # (XlyeXM)oos then EL™(¢%) = 0. If € = (xlyeXM)oo, we have

i (E2™(6S)) = Ypm - A(t) - Npyq(@P))™ - 7(x )"
LO(r®x,5+3)
Qe '

X [Hp\p e;:(ﬁ—vX7j)] . 600(7T7Xaj) .

If @ satisfies the (more general) Conditions 2.8 then the same is true when B, > 1 for all p|p.
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Here 7(xy) is the Gauss sum, () is the prime-to-p part of the different, and the e(—) terms
are as in Definitions 5.18 and 5.19 above.

Proof. By Lemma 5.16, we have vanishing unless the sign condition is satisfied, whence the left-
hand side is a product of local zeta integrals. The integral at infinity was computed in Theorem
5.17. At v { poo, the integral is (,(j + 1/2, WF7 x,), which was evaluated in (2.15). In the
product, we get the claimed L-value and Np/q(0®)"", and a product of y,(w,)’s.

At p|p, if Conditions 2.8" hold, then we are in case (C2'), of Proposition 5.20, and this
computes the integral for all x,. If only Conditions 2.8 hold, then we are in case (C2), and
Proposition 5.20 computes it whenever 3, > 1.

The T'(xp)’s combine with the products of x,(w,)’s at v { poo to give 7(x )", as in [38, Thm.

4.7). The L-factors combine into L(®)(—). The other terms are as claimed. O

6. Finite slope p-adic L-functions

By a conjecture of Panchishkin [66], the p-adic L-function of 7 is expected to be a p-adic distri-
bution on Gal,, the Galois group of the maximal abelian extension of F' unramified outside poo,
satisfying growth and interpolation properties. We now use the formalism of §4 to construct eval-
uation maps on overconvergent cohomology groups, valued in the space of distributions on Gal,,
and use them to give a construction of p-adic L-functions attached to non-Q-critical Q-refined
RACARs 7 satisfying Conditions 2.8. We show these p-adic L-functions satisfy the required
growth and interpolation properties by using the results of §4.3 on the variation of evaluation
maps. In particular, in this chapter we prove Theorem A of the introduction.

Since this chapter provides the technical heart of our p-adic interpolation results, for the
convenience of the reader we briefly summarise its content.

o In §6.1, we set up the language of distributions on Gal,, and endow them with an action
of H(AFp), which will later allow us to use the formalism of §4.3 when combined with
evaluation maps.

e In §6.2, we give the main technical construction and result of this chapter, namely the
construction of the commutative diagram in Proposition 6.12. This yields a p-adic inter-
polation of the classical branching laws for H C G described in §5.2.

e In §6.3, we define the overconvergent evaluation maps.

e In §6.4, we show that the overconvergent evaluations interpolate the classical evaluation
maps £ of the previous section.

o In §6.5, we recall growth properties on distributions on Gal,, and prove that distributions
in the image of our evaluation maps have controlled growth.

e In §6.6, we finally define the p-adic L-function of & and prove Theorem A.

6.1. Distributions over Galois groups.

6.1.1. Definition of Galois distributions. Throughout this section, fix A € X (T) a pure clas-
sical ‘base’ weight, and let

Q= Sp(0q) C 72
be an affinoid. We allow Q = {\} for A classical, in which case Oq = L. Let xq : T(Z,) = O

be the tautological character attached to €2, and recall the purity weight wq : Z; — 0F, all
defined in §3.2.3.
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We recall the structure of Gal,. Recall Op;, = O ® Z,. For 3 = (B;),)p, with 3, > 0 for
each p | p, let
Us = 1+ Or,) [EQP),
where E(pP) is the p-adic closure of
E@®) ={uc 0N ELlu=1(modp’)}.
Then by Class Field Theory we have an exact sequence
1 — % % Gal, & €15 (p°) — 1. (6.1)

Recall the distribution modules D(X, R) from §3.2. The sum of the natural restriction maps
induces a decomposition

D(Gal,,00) = € D(Gal,[x],00), (6.2)

xe%fft(pﬁ)
where for x € €01 (p”), we define
Gal,[x] == 77(x) C Gal,.

The map ¢ induces a map
Ly ! 'D(%ﬁ, OQ) — D(Galp, OQ),

whose image can be identified with D(Gal,[15], L), where 14 is the identity element in €75 (p?).
In the limit, the Artin reciprocity map rec : A5 — Gal,, induces an isomorphism

Galy, o CUL(p™) = FX\AL /U (p™) F°, (6.3)

where % (p*°) = [],4, OF. Note that the cyclotomic character xcyc from (5.1) is naturally a
character on Galy,; it is the character attached to the adelic norm via [16, §2.2.2].

6.1.2. Group actions on Galois distributions. If ¢ € A} and z € Galy, to simplify notation we
write cx := rec(c)z. We define a left action of (d1,d2) € Ax x Aj on A(Gal,, Oq) by

(61’ 52) * f(m) = chc(62)wnf(6;152x)7 (64)

and dually a left action on D(Gal,, Oq). Recall the evaluation maps of §4 were indexed over
mo(X) (a product of two class groups), and prg : mo(X5) — 6C4(p?) from (5.3).

Lemma 6.1. Let § = (61,02) € Af x AY, representing an element [0] € mo(X3), and let
x = pry([3]) € CCE (7).
The action of § induces an isomorphism
D(Us, 0q) — D(Gal,[15], 0n) - D(Gal,[x], Og).
Proof. The action of § on u € D(Gal,, Ogq) is induced by the action of 6! on A(Gal,, Oq) by
(67" % f)(@) = Xeye(82) ™" (5165 ).

By (4.4) 6,6, " is a representative of x, so multiplication by 5, " on Gal, sends Galy[1g]

isomorphically to Galy[x]. Hence this action induces a map
61 x — : A(Gal,[x], Oq) — A(Gal,[15],0q)
which dualises to the claimed map. O
Via (6.4), we have an action of H(A) on f € A(Gal,, Oq) by
(h1, ho) * f = (det(hy),det(ha)) * f, (6.5)
and hence a dual action on D(Gal,, Oq). Note that both H(Q) and HZ act trivially.
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6.2. p-adic interpolation of branching laws for H C G. Let K C G(Ay) be an open
compact subgroup as in §4.2. For each § with 8, > 1 for all p|p, in §6.3 we will define a map

EVZO : HE(SK, .@Q) — D(Galp, OQ)

that simultaneously interpolates the evaluation maps 5;;”70 of §5 for all classical \ € , for all
j € Crit()\), and for all x of conductor p?.

The key step in the construction of this map, which we pursue in this subsection, is to
interpolate the branching law of Lemma 5.2 (which was crucially used in the definition of 53;"0).
We do this by interpolating the maps xS ; from (5.2), in the following sense: for classical A € €,
by Lemma 4.6 we have a commutative diagram

EvDQ
H! (S, Zq) o (Do)r, 5 D(Gal,, Oq) (6.6)
lmosm Y J{mosm luﬁspx(u)(xiyc)
EVZ)‘(; K,i i
HE;(SKa/y/)\V) —_— (V,\V)F;;,(s : Lv

and we now define the ‘missing’ horizontal map in the top row so that the horizontal compositions
commute with the outer vertical maps (see Proposition 6.12).
Our strategy is to construct a map

vl - A(Galy, Og) = Ay C Aqg, (6.7)

where Agﬁ ** denotes the I'g s-invariants, and then dualise to get the required map (Dg) —

D(Galp, OQ)

The map x5 ; was defined by an element vy ; € V), which we described explicitly in Lemma

FBAS

5.7 (noting vy ; was defined to be k3 ;(u;)). Our definition of vé, given in (6.10), is really an
interpolation of this last description of vy ;.

Remark. Note restricting elements of D to the subspace Agﬁ ? C Aq induces a well-defined
map (Do)r, , — (A?f )V, Slightly abusing notation/terminology, we will identify elements of

(Do)r, s with their image under this map, and continue to call them distributions (on A"#:9).

6.2.1. Support conditions on distributions. We want to define vg to interpolate vy ; € V) from

§5.2. However, we have explicitly described the function vy ; : G(Z,) — L only on the subset
N (Zy) € G(Zy) (see Lemma 5.7). The following support condition shows that for the outer
vertical maps of (6.6) to commute with the horizontal compositions, it is sufficient to specify vé
on subsets Ng(Zp) of Nj (Zp).

For B = (By)p|p With each B, > 1, let

NG (Zp) = {(§X) € No(Zp) : X = 1, (mod p°)} € N (Z,), (6.8)

and define

Jpﬁ = (Né(zp) N Jp) : H(Zp) 'Ncg(zp) - J;D'

Lemma 6.2. Let ® € H'(Sk, %), and let 6 € H(A). The distribution Evg%(q)) € (Dq)
in the sense that if f € Agf";, then

F[—}’g
has support in J]f,

EvE3(@)(f) = BvE3(®) (f1,9)

depends only on the restriction of f to Jpﬁ.
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Proof. Via the map T3, we see that
EvE%(®) € () * Da)r, ;-
It thus suffices to prove that for any u € Dq and f € Aq, we have
&ty * 1)(f) = (Etp * ) (fl ),

or equivalently that
(€t) e £ = (@) e Sl
By definition (see §3.3), the action of (ftf,)’l on f € Ag is induced by the action

X)) — [t ()t ¢t (6.9)
= (1) G ) = () () e

on (3 ¥) e No(Zy). Thus ((ftg)*l*fﬂNQ(zp) depends only on f| ;5. By parahoric decomposition
P
(3.8), we deduce that (£45)~! « f depends only on f| s, as claimed. O

6.2.2. Interpolation of vf in families. Recall that the description of vy ; in Lemma 5.7 was
given in terms of a specific vector vf{ € V/\H. We now interpolate vy ; as A varies in €.

In Notation 5.9, we fixed v{ € V¥ (OL) to be an (optimally integral) generator of the unique

line in V(L) on which the action of ((",)), is multiplication by (Np,q o det)"*~.

A
Notation 6.3. Let vg = vi ®1e€ Vg
The following statement is an analogue of Lemma 5.8 for families.

Lemma 6.4. Let h € G,(Zp). Then
(") vl =wa(Np/q odet(h)) v
Proof. By the definition of the action of H(Z,) on VZT (see (3.5)), we have
(")) i ®1) = wx, (Np/q o det(h))vy @ wq,(Np)q o det(h)),

recalling

Xﬂo(h7 h) = WQO (NF/Q o det(h))
from (3.4). We conclude as wg = wx_wq,- O
Lemma 6.5. If A\ € Q is a classical weight, then spy(vl) € VH(OL) is optimally integral,
non-zero, and

(" h)>)\ -spy(v) = (Np/qo det(h))"*sp, (vd).

Proof. Non-vanishing is immediate from the definition, and the action property follows from spe-
cialising Lemma 6.4. To see sp, (v} ) is integral, recall v{ € Vi (O ) is integral, so vl (H(Z,)) C
Oyp. Since X is algebraic, we have A\ (H(Z,)) C Of. By definition spy (vf) = vff @ A\, so
we deduce

spr (V) (H(Z,)) € Oy

As vfi is optimally integral, it also follows that

wy 'spA(vg)(H(Zy)) ¢ O,

so spy (vl) is optimally integral as claimed. O
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Lemma 6.5 allows us to make the following renormalisation of the vectors from Notation 5.9,
which aligns them in the family €2.

Definition 6.6. If A € Q) is a classical weight, let

vy = spy(vgy) € VT (Or).

Remark 6.7. This does not change our earlier choice of v | since sp! (vf) = vi .

From v¥ as in §5.2 we obtain compatible choices of K3,; s J varies in Crit(A). The definition
of Uf depends only on vf, which depends only on the choice of vf\{r . In particular, the (single)

choice of vfﬂ determines compatible choices of «3 ; for all classical A € Q and all j € Crit(\).

6.2.3. Construction of vg and ng. Note
A(s,00) C AL +p"Opp, 0)
is the subset of functions invariant under E(p?). Recall Ng(Zp) from (6.8). We have a map
N (Zy) — 1+p"OF,
(61) — (=1)" det(X).

Define a map
’Ué s A(L —i—pﬁOFJ,7 Oq) — Aq

as follows. For f € A(1+ p?Op,, Oq), define
vo(f) : No(Zy) — Vil
by setting, for X € M,,(OF,,),

P detCO) ({5 D)ol ) < (5Y) € G2,

0 : else.

(6.10)

Extending under the parahoric decomposition using (3.8) determines vg( f) as an element of Aqg.

Definition 6.8. Dualising
A(Us,00) C A1 +p"Opp, Oa) — Aqg,
f— va(f)

gives a map
K« Do — D(Us, Og). (6.11)

Remark 6.9. The map /{g, combined with Lemma 6.1, will induce the ‘missing’ map in (6.6).
To motivate (6.10) and Definition 6.8, compare to the description of k3,; in Lemma 5.11. For
the support condition in (6.10), note that for the outer maps of (6.6) to commute, by Lemma
6.2 it suffices to consider vé( f) supported on Jf , and hence (by parahoric decomposition) on
N3(Z,)

Restricting under (6.1), we may see Xqyc as an element of A(%3, L), and thus make sense of
Uf (XZye), supported on JP. Let A € Q be classical. Recall

UXxj - NQX (Zp) — VAH(L)
from Lemma 5.11. In (5.8) of this lemma, we normalise vl as in Definition 6.6. The following
shows that vf\a interpolates vy ; as j varies in Crit()), and hence interpolates branching laws in

the ‘cyclotomic direction’.
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Lemma 6.10. Let A € Q be classical. For all j € Crit()\), we have
N Oyl yo = vail -
Proof. 1If g = ngh (§ X ) € JJ, then
det(X) € (=1)" +p° O, C (OFp)*,
where the last inclusion follows as 3, > 1 for all p. Hence
Np/qodet(X) € Z, S0 (55) € N5(Zy).

On such X we have

\ye((~1)" det (X)) = (—1)¥/N/q o det(X)/.
Combining this and the definition of vf with Lemma 5.11, we see that

o Ocye) (6 ) = o [(3 1))

for all (}§) € Ng(Zp). We conclude vf(xgyc) and vy ; agree on all of Jpﬁ,

same transformation law under parahoric decomposition. O

as they satisfy the

We now combine vé with the formalism of evaluation maps developed in §4.3.

Proposition 6.11. (i) The action of £ = ({1,{2) € Lg on A(Gal,, Oq) under (6.5) is by
[ f](2) := [(det(£1), det(l2)) * f](x) (6.12)
= Npjq(det(fa))™ f(det(£1 02 ) ).
It preserves A(%s, Oq), giving it the structure of an Lg-module.
(ii) The map
A(%g,@g) — AQ,
I vp(f)
is a map of Lg-modules.
(iii) The image of vg is a subspace of the T'g s-invariants Ag‘”,
(iv) The map /ﬁé from Definition 6.8 is a map of left Lg-modules, and factors through
’ig : (DQ)F,H,(S - D(%B>OQ)
Proof. (i) Since det(£;) € (Op ® Z)*, we have
chc(det(fg)) = NF/Q(det(zlp))
and det(¢; ) € % (p™) for all v { poo. Hence
[det (¢, bo)x] = [det(€y 05 )]

in Gal,, and (6.4) induces the stated action. It preserves A(%p,Oq) since det(ﬂi;€27p) =
1 (mod p?) by [38, Lem. 2.1].
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(ii) For f € A(%s, L), we must show that
£ vg(f) = vg(é* f)-

Let X € Mp(Opyp). If det(X) # (—1)" (mod p?), both sides are zero at (§ ). If det(X) =
(—1)™ (mod p?), then

(=) (5 ) =vbn (5 )

), o) (T o xter)

o (e 0 ), - (v aeste st
(z%’p ef,p ) >Q : (f (=)™ det(EZ;sz,p)]”g>

Npyq(det(€a,))* f[(—1)™ det (€1, ls ) det(X)] v )

Il
T~
—
o
So
S—
~
fe}
TN N

proving (ii); the first equality is the x-action, the second is (3.8), the third is (6.10), the fifth is
Lemma 6.4, the sixth by (i), and the last is (6.10).

(iii) Note I'ss C H(Q) acts trivially on A(Gal,, Oq) (see (6.5)). Hence 6 'I's 56 C Lg
acts trivially on A(Gal,, Oq), hence trivially on A(%j, Ogq). From (ii), it follows that 6 '1T'5 50 —
acting as a subgroup of Lg — acts trivially on the image of vg. But by definition of the I'g s-action
(see (4.7)), this means I'g 5 acts trivially on this image.

(iv) That ng is a map of Lg-modules follows from (ii), and thus it factors through (Dq)r, ,

since the target is I'g s-invariant by (iii). O
6.2.4. Proof that mé interpolates k3 ;. The following is the main result of §6.2.

Proposition 6.12. Let A € Q classical and j € Crit()\). The following diagram commutes:

EVDQ Kg
H! (S, Z0) 2 (Do)r,, D(U3,0q) (6.13)
l/spA \Lsp) \LspA
Evg?; K2
HE(SK,@)\) (DA>FB,5 D(%57L)
l’” vy \Lf%ﬁ e
. y Evﬁ’)‘é v K,R’J
HC(SK7 7/)\ ) (V)\ )Fﬁ,é L.

Proof. The top left-hand square commutes by Lemma 4.6. We next consider the top-right square.
In the definition of Hg, note by definition that sp,(vd) = v and the action (-)q specialises to
() under spy. In particular, if f\ € A(%3,L) and fo € A(%3,Oq) is any lift under spy, then

spalvg(fo)] = v5(fr) € Ax.

We describe the map spy : Do — D, directly. Let puo € Dgq, and gy € Ayx. Choose any
ga € Aq with spy(g9a) = gx- Then

[spx (10)](9x) = spy[pa(ga)] € Oq/my,
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which is easily seen to be independent of lift. Here my C Og, is the maximal ideal attached to A.

In particular, for fy, fo as above,

spa(ka)[vh (f2)] = spylua (v (f2))l-

Let po € (Da)r, ;; then the top right square commutes as

(K5 0 spx ()] (£2) = spa(ka) [05 (F2)] = spa [1a (v5(fa))]
= spy [(16y (110)) (fo)] = [spy 0 Ky ()] (f)-

We have used the previous paragraph in the second equality.

Now consider the bottom rectangle. If we ‘complete’ (6.13) with the natural map ry :
(Da)rss — (VY)rs,, then the bottom-left square would commute by Lemma 4.6, but the
bottom-right square would not commute, due to support conditions. However if p € Im(Evg,g),
then p is supported on Jf by Lemma 6.2. For such p, compute

/ ngc : “f(ﬂ) = / Uf (X%yc) Y
Us J,

:/ ”f(xgyc)’” :/ Ux,j 'H:/ Ux A1)
Ty g G(Zy)

(recalling from Lemma 5.11 that K3,; is evaluation at vy,j)- In the second equality, we use that
1 has support on JZ? , whence the third equality follows from Lemma 6.10. In the last, because
vx; € Vi we have p(vx;) = ra(p)(va;), and then we expand from JJ to G(Z,) using that p
(hence rx(u)) is supported on Jf again. Thus the bottom-right square is commutative on the
image of EV?%, and the bottom rectangle is commutative. O

6.3. Distribution-valued evaluation maps. We now define overconvergent analogues of
&, Let

e §=(61,02) € HA),

o let [d] be its class in mo(Xg), and

o let x = pry([d]) € €1} (p?), for pry as in (5.3).

As above, det (6105 he A} is arepresentative of x. Recall the evaluation map Evg‘g from §4.2.3,
and define a ‘Galois evaluation’ Evg 5] as the composition

EvDQ wP
Evg 5 : H Sk, Z0) —2 (Da)r, ;, ——— D(%s,0q) (6.14)

O D (Galy[x], Og).

Here the action of 6 on yu is by (6.5), the map Iig was defined in Definition 6.8, and the target
is D(Gal,[x], Oq) by Lemma 6.1.

Lemma 6.13. Evg 5 is independent of the choice of the representative 6 of [§] € mo(Xp).
Proof. Recall D(Gal,, Oq) is a H(A)-module via (6.5), with H(Q) and H, acting trivially. Let
w2 .
Kk : Dq —2 ’D(%ﬁ, OQ) T*> ’D(Gal[lg], OQ) C D(Galw OQ)
denote the composition. From Proposition 4.9, we have a map

Evg?é]” HL(Sk,Dq) — D(Cal,, Og).
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If ® € H!(Sk, %) then by definition we have

Ev§125f(¢) = 0% [k o EvES(®)] = Evg 5(®).
Then independence of § follows from Proposition 4.9. O
As in Definition 5.4, let 79 be any finite order character of ¢¥f(m). Then define
EvY, : HL(Sk, Za) — D(Gal,[x], Oq)

S S (pra([8]) Bv g (@).

Blepr; (%)

Using (6.2), we finally obtain an evaluation map

v = @ Evl,:HL(Sk,Z0) — D(Galy, Oq) (6.15)
x€Et (pP)
& Y gt (era(8]) x (0[5 o BVE(®)]).
[0lemo(Xp)

Remark 6.14. In the notation of Remark 5.5, EvgO is the composition

/@EN
EviQ 5

8
V.5 *EQG

52}
H{(Sk, Za) — D(Da)r, 5 P D(Gal, [prs([9])], O) (6.16)
(4] 9]
lzxazﬂ
Bvg? D(Gal,, Og),

where again Z3° sends a tuple (mjs))[s] to Z[a]eprﬁ—l(x) g (pra([6])) x mps).

The maps Evg0 are functorial in Q. Let A € , and let sp, : Oq — L denote evaluation at A.

Proposition 6.15. Let 3 = (By)p|, with By > 0 for each p|p. We have a commutative diagram

E 0

H (S, Z0) — > D(Gal,, Og)
ispx \LSPA
Evg0
HZ(SK, .@)\) — D(Galp, L).

Proof. We check that every square in the following diagram is commutative, where the horizontal
maps are as in Remark 6.14 (with the middle horizontal maps a composition of two of the maps
in that remark) and every vertical map is induced from sp,:

HE(SK, QQ) E— EB[(;] D(%ﬁ, OQ) — @x D(Galp[x], OQ) — D(Galp, OQ)

! | \ |

HL(Sk, ) —> @5 D(%s, L) —> @, D(Gal,[x], L) —= D(Gal,,, L).

The first square commutes by Proposition 6.12. The second horizontal arrows are induced by
d * —, and sp, is H(A)-equivariant, so the second square commutes. The remaining horizontal

maps are given by taking linear combinations, which commutes with sp,. O
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Proposition 6.16. Let 3 € (Zxo),|, and fix p|p in F. Suppose that B4 > 0 for each q|p and let
B’ be the tuple defined by By, = By + 1 and By = By for each prime q|p other than p. Then

Eviy =Evy oUy H.(Sk, Za) — D(Gal,, Og).
Proof. For each [d] € mo(X3), from Proposition 4.10 we deduce

Y. Evgs=Evg ol
(5')epr; L (13])

Scaling the left-hand side by 7, " (pro([0])) and summing over [§] € mo(X3) gives Ev (see (6.15)),
and doing the same on the right-hand side gives Evz0 o Uy, from which we conclude. O

Definition 6.17. Let ® € H!(Sk, Zq), and suppose that for every p|p, ® is an eigenclass for
Uy with eigenvalue oy # 0. We define

p"(®) == Evy (®)/(e5)” € D(Galy, Oq), (6.17)

where § is any tuple such that f, > 0 for each plp and (ap)” := [],,(a;)”>. By Proposition 6.16,
the distribution p°(®) is independent of the choice of 3.

6.4. Interpolation of classical evaluations. Fix A\ € X (7). Via specialisation H:(Sg, Z») =
H!(Sk, 7)), we now relate Evjy’ from (6.16) to the evaluations &m0 of (5.5) as X varies over €,

j varies in Crit(\) and  varies over finite order characters of conductor p”.

Lemma 6.18. Let ® € H:(Sk, Z)). Let x be a finite order Hecke character of F of conductor
p?, with B, >0 for all p|p. For all j € Crit(\), we have

/G X e BV (@) = 87 o (@)

Proof. In view of Remarks 6.14 and 5.5, the lemma follows directly from commutativity of the

following diagram, since the maps EVZO and E%”O are respectively the left and right columns:

H (Sk, Z2) = HY(Sk, 73)
o (w7072 | & (3, 0mvy )
® %, Xiye
D D(%s, L) DL
[6] [0]
O . O*
@ fGalp[x] XZyC
@ D(Galy[x], L) DL
(4] [0]
B ] B
® fGalp[x] Xéyc
@D D(Gal,[x], L) DL
) . —Sx(x)lx
fGalp XXlye

L.

D(Gal,, L)

Recall Z3° was defined in (5.5) and all the direct sums are over [§] € mo(Xj3) or x € €115 (p?),
related by x = prg(d). The first square commutes by Proposition 6.12. The second square
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commutes since for u € D(%p, L) we have

/ Xbye 0% pu = xcyc(det(fh)j det(dy) ™ ) / Xlye - i
Galp (2] Galp[z]

=0x* / ngc "
Galp[z]

where the action of § in the left-hand term is (6.4), and in the right-hand term is Definition 5.1.

The third square commutes by definition of Z°, and the fourth square commutes since

XXye 11 = X(X)/ Xlye - . O
|, o > [ X

xe%; (pP)

6.5. Admissibility of y™(®). We now assume = {\} is a single algebraic weight, in which
case Oq = L is a finite extension of Q. Let ® and {aj, : p[p} be as in Definition 6.17, and let

o = H(a;)ep, hy = vp(ay).
plp

We show u"° (®) satisfies a growth condition depending on k), that importantly renders it unique
for the very small slope case h, < #Crit(A).

As in [11, §3.4], the space A(Gal,, L) of L-valued locally analytic functions on Gal, is the
direct limit lim - A (Galp, L) of the spaces which are analytic on all balls of radius |p|~"™, and
each of these is a Banach L-space with respect to a discretely valued norm || - ||,,,. Dualising, we
get a family of norms

13l = SUP pe a,, (Gl FHT2

= SUPHfH?,LgﬂM(f” (6.18)

on D(Galy,, L), which thus obtains the structure of a Fréchet module.

Definition 6.19. (See [11, Def. 3.10]). Let h € Q>o. We say u € D(Galy, L) is admissible of
growth h if there exists C' > 0 such that for each m € Z>1, we have ||u||m < pmhC.

Proposition 6.20. Let ® be as in Definition 6.17, and h, = vy(ay). Then p° (@) is admissible
of growth hy.

Proof. We follow the proof of [11, Prop. 3.11], where this is proved for GLs. For m € Z34, put

Bm = (mep)p|p,

so that
(ap) ™| =p™  and  p*Op,=p"Or,.

By definition of p™, for f € A,,(Gal,, L) we have

™ (@) (f)] =

mhy,

p

S g (pralO)EVE (@) [of (670« P~ )] ’ (6.19)

[o]emo(Xp,y,)

By (6.19) it suffices to find C' such that for all §, m € Z>; and f € A,,(Gal,, L) with || f||mm, < 1,
we have

[BVE) 5(@) [o5m (57" + f\Galp[p%([é])])} <c (6.20)
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We also have descriptions Ay = ligm Axm and Dy = @m Dy m as limits of Banach spaces
(see [19, §3.2.2]), and each of the Dy ,, are preserved by the action of A, (§3.4 ibid.). For every
m > 1, restriction from Ay to Ay, induces a map Dy — Dy ,,. We let DY |, denote the Op-
module of distributions g € Dy, with ||u|]m < 1, which is a lattice preserved by the action
of A,. Note that rescaling ® does not affect admissibility (it rescales C); so without loss of
generality, we can suppose that the image ®; of ® in H!(Sk, Z\.1) is contained in the image of
H!(Sk, 93 1), that is, there exists ®9 such that we have

He(Sk, 73.1) o
Hi(SK,@,\)HHi(SK,@)\J) Pr——- P,

Fix § and m € Zy. For ease of notation, let
tm = EO™, Lp=Tp, s
As in the proof of Lemma 6.2 there exist u € Dy and py € DS ; such that
Evg) 5(®) = (tm * 11)5
and  EvDN5(®1) = Bvo b (09) = (b 1),

where in the second equation, we have applied Lemma 4.6 with £ the inclusion Df ; < Dy 1. By

Lemma 4.6 applied again, now with « the map Dy — D) 1, we deduce

p = (6.21)

AL ot Al

Note if g € Ay, then by definition g is analytic on
{(67): X € =L, +p"Mn(Orp)} C No(Zy).
Since the action of t,, sends Ng(Z,) onto this subset (see (6.9)), we have
bl % g € b x Axm C Axo C Axn

(i.e. t,, sends m-analytic functions to analytic functions). As vf’" preserves m-analyticity, we
thus have
t;Ll * ’Ufm [.Am(l + meRP? L)] C .A>\71,

and we can evaluate py on this set. Then:

Claim 6.21. We have

= . 6.22
u‘t;ﬁ*vfm [ (pm0r,n)] ‘t;ﬁ*vim [Am(14+pmOr ;. L) ] (6.22)

We explain how Proposition 6.20 follows from the claim. For f as above, let f5 := 61

f\Galp[prﬁ (5)))- As in Lemma 6.1, we have
f5 € Am(%ﬁva) - Am(]- +pm0F,p7L)'
Moreover ||t} * vf’”(f(;)Hl < 1: indeed

= |fllm < 1 by assumption;
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~ the action of 6! preserves integrality (as Xcyc is valued in Zy);

- vf”‘ preserves integrality (as vf\{ was chosen integral); and

— t-1 preserves integrality (as it acts only on the argument).

Thus

D Bm [ 5—1
‘Evﬁﬁ,é(q)) [”/\ (5 *f|Ga.1p[per([(5])>:H (! * o3 (3)]
= |pa (8 0™ (£5)) | < llpall < 1
where the first equality is by definition, the second is Claim 6.21, the third inequality is by
definition of || - [|; on Dy ; (the direct analogue of (6.18)) using ||t,,! * vf’”(fg)Hl < 1, and the

last inequality follows as p3 € DS ;. Since J,m and f were arbitrary, this shows (6.20) and thus
Proposition 6.20.

It remains to prove Claim 6.21. We first motivate the statement, in line with the proof of
[11, Prop. 3.11]. We might aim to prove the stronger statement that x4 and py agree on the set
tolx .AE”;,L (which contains ¢! * vf [Am (1 +p™OFyp, L)]); and to do this, it would suffice to
show

R AN C ot AN
is dense, whence equality would follow from (6.21). However it is not clear how to write down
explicit bases of .AI;m Instead we essentially prove an analogous density for the smaller, but
still sufficient, subset in the claim, using explicit bases for A,,(1 4+ p™Op,, L).
We have coordinates z = (25 )sex o1 Opyp. Note m-analytic functions on 1+ p™Op,), are

analytic, and an orthonormal basis for A,,(1 + p™OFp, L) is given by the monomials

we ()] ST (E)
14+pmOp, OES To(o)
for i = (i) € N[X]. First we show that for any ¢, we have
(= o0 ) = (Bl w0l ). (6.23)
To see this, note that vy (y}) € Al;\,ll exactly as in Proposition 6.11(iii), and we also have
80D =+ | (800) |,

=i, 1*’”)\ (yl)

1+meF,p

where the first equality follows as the action of t,, sends Ng(Z,) to Ng’” (Z,), and the second

from the definition of vy™. Combining, we have
t *vf’"(y)et 1*AFm

and (6.23) follows by (6.21).

Now directly from the definitions we have

=Dt sl (yi)] = [t ofe ()],

and combining with (6.23) we deduce

p

,u(t ! *vk (ym)) —Ml( *'UA (ym))

Claim 6.21 and Proposition 6.20 follow as the y’, are an orthonormal basis of A,,,(1+p™Op,,). O
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6.6. Non-Q-critical p-adic L-functions. We prove Theorem A from the introduction. Let
7 = (m,{ap}pp) be a Q-refined RACAR of weight A satisfying Conditions 2.8'. In particular, it
admits an (7),)-Shalika model, with 7 = no[ - [* and w the purity weight of A. Suppose that 7
is non-Q-critical (Definition 3.14). Fix K = K(7) and € € {£1}*, and let ¢ € HL(Sk, 7)),
as in Definition 2.10. By definition of non-@-criticality, ¢% lifts uniquely to an eigenclass ®% €
HL(Sk, Z2)q, with Ug-eigenvalue ag, recalling ap = A(tp)ay. As above, write o = [T, (ep)r-
Definition 6.22. Let L;(7) = p™(®%) be the distribution on Gal, attached to ®%. Let
P = Zse{il}z &<, and define the p-adic L-function attached to 7 as

Lp(7) = ™ (Pz)

= Y Ly(#) € D(Gal, L).
ec{£1}>

For shorthand, for any ¢ € A(Gal,, L) we write
Ly(7,1) == Y- Lp(7).
Gal,
Let
2 (Gal,) = (Spf Z,[Gal,])"®
denote the rigid analytic space of p-adic characters on Gal,. Via the Amice transform we may

view L, (T, —) : 2'(Gal,) = Q, as an element of O(2 (Galy,)).

Theorem 6.23. The distribution L,(7) is admissible of growth h, = vy(ay), and satisfies the
following interpolation property: for every finite order Hecke character x of F of conductor pP,
and all j € Crit(X\), we have

LP(r®x,j+ %)

iy (L (7, xxye)) = AT(Xs)"Nryq(@)" [ [ en(7y X, 4) - €oo(m, X, ) - O , (6.24)
plp T
where € = (Xxgycn)oo and exo(m, X, 7) is as in Definition 5.18. At p we have
(30 (n+ 2
B ) p) | i+ ) B
ep(T, X, J) = @y o,
if xp 1s ramified, whilst if x, is unramified we define
o) m T e @
plt X T 1/2°
i=nt1 1= Opixp(@p)ap =Y
Finally A is the global constant
n2+n
*%( ) o
A= Ypm - H € Q. (6.25)

plp

Proof. Admissibility is Proposition 6.20. For the interpolation, from Lemma 6.18 we know
[ e i (@2) = (a5) x €1 (60),
Gal,
where we must replace 3, with max(3,,1)). This is equal to the statement by Theorem 5.22, not-
: o\— — in in dpnj j— € (4 j
ing /\(tg)(ozp) B = apﬁ and Np/q(0)'" = NF/Q(D(”))J Hp‘p % 7. Note that i 1(,Cp(w, XXiye)) =
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Remarks 6.24. The same theorem holds under the weaker hypothesis of Conditions 2.8', but
with the additional assumption that 3, > 1 for all p|p, i.e. each x, is ramified. To include 8, = 0
requires a careful analysis of the local zeta integral at p for ramified 7, and unramified x,, which

was carried out by the second author with Jorza [39].

Finally we consider uniqueness properties of £,(7).

Proposition 6.25. Suppose Leopoldt’s conjecture holds for F at p, and that h, < #Crit()).
Then L,(7) is uniquely determined by its interpolation and admissibility properties.

Proof. Leopoldt’s conjecture implies that Gal, is 1-dimensional as a p-adic Lie group. Uniqueness
is then a result of Vishik [85, Thm. 2.3, Lem. 2.10], shown independently by Amice—Velu [2]. O

When h;, < #Crit(A), the restriction of £,(7) to Gal,”® is unique even without Leopoldt’s
conjecture. This can be seen by arguments analogous to [11, (78)].

When h, > #Crit()\), we will prove analogous uniqueness results in §8.5, as an application
of our construction of p-adic L-functions in families.

7. Shalika families

For the rest of the paper, we will be concerned with variation in families. In this section, we prove
Theorem B of the introduction; namely, we show that: (1) the eigenvariety is étale at a non-Q-
critical Q-refined RASCAR 7, and (2) that the unique component through such a 7 is a Shalika
family. Since we believe these results to be of independent interest beyond our precise results
on p-adic L-functions, we first present them in wide generality here, always working with Hecke
operators away from the set S of ramified primes from §2.4. In the process, we develop methods
that will be crucially used in the next section, where we make an automorphic hypothesis and
add further Hecke operators at each v € S, and refine these results to better suit the study of
p-adic L-functions.

Throughout, let 7 be a @-refined RACAR of weight A\, satisfying (C1-2) from Conditions 2.8.
An undecorated K will always mean an arbitrary subgroup satisfying the conditions of (2.20).
We will also consider more specific choices K (7), K1(7). Unless otherwise specified, we take all
coefficients to be in a sufficiently large extension L/Q, as in §2.10 and drop it from notation.

7.1. Set-up, statement of Thm. 7.6 and summary of proof.

7.1.1. The eigenvarieties. We introduce local charts around 7 on a parabolic eigenvariety. Fix

h € Qxo. Via §3.3, let Q be an L-affinoid neigbourhood of A; in W)\Qﬂ such that H (Sk, Zq)
admits a slope < h decomposition with respect to Uy. Recall H from §2.9.

Definition 7.1. o Define Tq j,(K) to be the image of
H R Oq — Endp, (HE(SK, Qﬂ)gh).
e Define
Ea,n(K) == Sp(Tao,n(K)),
a rigid analytic space.

Let w : & n(K) — Q be the weight map induced by the structure map Oq — Tq ,(K). For
any € € {£1}*, write T§, ;,(K) and &5 5, (K) for the analogues using e-parts of the cohomology.
As TG, , is a quotient of Tgq 5, each &G 5, (/) embeds as a closed subvariety of & 1, (K'). Moreover

San(K) = U, 654 (K).
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The local piece &g 1, (K) is the space denoted Eg,f in [19, §5]. By definition, &g, (K) is a rigid
space whose L-points y are in bijection with non-trivial algebra homomorphisms T, (K) — L,
or equivalently, with systems of eigenvalues 1, : H — L appearing in H!(Sk, Zq)<".

We use the convention that € (resp. .#) denotes a connected (resp. irreducible) component
of & (with appropriate decorations).

Definition 7.2. (i) We say a point y € &g n(K) is classical if there exists a cohomological

automorphic representation m, of G(A) having weight A\, := w(y) such that ¢, appears in
K
y )
we use the notation m, = mz  for the associated maximal ideal of Tq (k).

m,, whence 71, = (my, {1y (Ug) }p|p) is a Q-refined automorphic representation. Throughout

(ii) A classical point y is cuspidal (resp. essentially self-dual) if 7, is.

(iii) For a finite order Hecke character 79, an (1o, ©)-Shalika point is a classical cuspidal point

y such that 7, admits an (1o - [**, ¢)-Shalika model, where w,, is the purity weight of A,.

(iv) A classical (resp. (no,)-Shalika) family in &q 5 (K) is an irreducible component .# in
&a,n(K) containing a Zariski-dense set of classical (resp. (1o, 1)-Shalika) points.

To describe the geometry of &, 5, (K), we must be precise about the level K. In Theorem 7.6,
there will be two particularly important level groups: the group K (7) from (2.23), at which
Friedberg—Jacquet test vectors exist; and a more explicit group K;(7), which we now define. For
any place v and m € Zx let

Ki »(m) C GL2,(O,)

be the open compact subgroup of matrices whose bottom row is congruent to (0, ..., 0, 1) mod w"*.
The Whittaker conductor m(m,) of m, is the minimal integer m such that ﬂfl’“(m) # 0, and by
[51, §5]

dimg wKuemm) — 1 (7.1)
Note K3 ,(0) = GL2,,(O,), so 7, is spherical if and only if m(m,) = 0. We define
K1(7) = [, Jo gy Kro(m(m)) € G(Af). (7.2)

7.1.2. Hypotheses on w. Our results require hypotheses on 7 that we now make precise.

Definition 7.3. We say m admits a non-zero Deligne-critical L-value at p if there exists a pair
(x,7) such that
Lir®x,j+3) #0,

where j € Crit()\;) and x is a finite order Hecke character of conductor p” with 3, > 1 for all p.
This L-value has sign € if € = (xxZyc1)00 € {£1}7.
Note that L(1®Yx,s) # 0 <= L®)(7®Y,s) # 0 (as the local factors at p are non-vanishing).

Conjecturally, this non-vanishing is true for all but finitely many such pairs (y, j), so every 7
should satisfy this hypothesis. In practice, this is guaranteed by the following simple criterion.

Lemma 7.4. m has a non-zero Deligne-critical L-value at p if (Ar)on > (Ar)omt1 Vo € X.

Proof. Let j be the largest integer in Crit(A;), and x any Hecke character satisfying the con-
ditions of Definition 7.3. The hypothesis ensures that #Crit(\;) > 1, so that j + % > 5 +1
(recalling w is the purity weight), and hence L(7 ® x,j + 3) # 0 by the main result of [52]. [

Definition 7.5. Recall A is regular if A\, ; > As,i+1 for all o and i. Say it is H-regular if
Ao 1 > > Aoy and Appgp1 >0 > Agon (7.3)

for all o (allowing Ay, = Asn+1). Such weights are regular as weights for H.
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For a field E, let Gg := Gal(E/E). Attached to any RACAR 7’ of G(A) we have a Galois
representation pr : Gp — GLgn(Qp), depending on our fixed isomorphism ¢, : C = Qp (see
[47]). For a finite prime v of F', we say Local-Global Compatibility holds for «' at v if

WD (pr |G, )¥ 7 = tprecy, (m, ® | - |17072),

where recg, denotes the local Langlands correspondence for GLa, /F,. This is conjecturally
always true; it is known in general up to semi-simplification [82], and is known when 7’ is
essentially self-dual (for self-dual RACARs this is shown in [76, 29]; it is explained in [34, §4.3]
why the essentially self-dual case follows). Hence it is known if 7’ is a RASCAR.

7.1.3. Statement. Let & be as in Conditions 2.8, of weight Ar, and let o =[], (a)®. Recall
K(7) from (2.23) and = no| - [ from §2.6. Fix h > v,(ay). In the rest of §7, we will prove:

Theorem 7.6. (a) If T is strongly non-Q-critical at p (see Definition 3.14), then for any K
as in (2.20) there is a point xz(K) € &q 1 (K) attached to 7.

(b) Suppose further that m admits a non-zero Deligne-critical L-value at p. At level K(7), there

exists an irreducible component in &q (K (7)) through xz(K (7)) of dimension dim(€2).

(¢) Suppose further that A\, is H-regular. There exists an (no,v)-Shalika family 7 (K (7)) in
o (K (7)) of dimension dim(Q).

(d) Suppose further that pr : Gr — GlLa,(Q,) s irreducible. Then:

P

(d1) at level K1(7), &q,n(K1(7)) is étale over Q at x7(K1(7)), and the (irreducible) con-
nected component € (K1 (7)) through xz(K1(7)) is an (1o, )-Shalika family;

(d2) atlevel K(7), (K (7)) is the unique Shalika family of &q 1 (K (7)) through xz(K(%)).
Moreover the nilreduction of Z (K (7)) is étale over Q at xz(K(7)).

(e) Suppose further that Local-Global Compatibility holds at all v t p for all RACARs of G.
Then in (d2), S (K (7)) is also the unique classical family of &q (K (7)) through zz(K(7)).

Tt is important to be precise about the level K, so we take a maximal (if unwieldy) approach
to notation. If K is completely unambiguous we will drop it from notation.

Remark 7.7. Theorem B of the introduction is a special case of (d1). Indeed, non-Q-critical
slope implies strongly non-Q-critical (Theorem 3.16), and if A, is regular then it is H-regular (by
definition) and 7 admits a non-zero Deligne-critical L-value at p (Lemma 7.4), hence £,(7) # 0.

Conjecturally, if 7 is cuspidal then p, is always irreducible.
For the convenience of the reader we summarise the key steps of the proof.

o We first show that specialisation sp, : Do — D), induces an isomorphism on the 7-part
of degree t cohomology (Proposition 7.8). The existence of xz(K) follows immediately.
Here we crucially use that t is the top degree of cohomology in which 7 appears.

« From §6, for each 3 we have a Og-module map Ev} : H!(Sk, %q) — D(Gal,, Oq), and
the target is torsion-free. When K = K(7), we show that this map is non-zero for some
B using Proposition 7.8, the non-vanishing L-value and Theorem 5.22. More generally,
the map is non-zero if £,(7) # 0. Given non-vanishing, we deduce in Corollary 7.12 that
T (K (7)) is faithful over Oq locally at xz(K (7)), and deduce (b) from this.

 Using evaluation maps and (again) the non-vanishing L-value, we construct an everywhere
non-vanishing rigid function on €2, whose value at each classical A is a sum of Friedberg—
Jacquet integrals over the finite set y € w™!(\) C &q (K (7)). In Proposition 7.16, we use
this and Proposition 5.15 to deduce (c).
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o We can produce dimension in &q j, at level K (), but cannot control the size of the classical
cohomology at this level. However, at level K;(7), by (7.1) H.(Sk, (7), /A ), is a line.

m
Using commutative algebra we deduce T¢, , (K1(7)) is cyclic locally at zz(K:1(7)). Via
Local-Global Compatibility for RASCARs and p-adic Langlands functoriality, we prove a
‘level-shifting’ result between levels K;(7) and K (7) in families, giving a precise compati-
bility between & 5, (K (7)) and &5 ;,(K1(7)) at 7. Combining cyclicity at level K () with
faithfulness at level K(7), we deduce (d). Part (e) follows similarly.

7.2. Proof of Thm. 7.6(a): Existence of zz(K). Recall ¢, from (2.6), is the top degree of
classical cohomology to which 7 contributes. If 7 is non-Q-critical, then by Theorem 3.16

HE(SK7 -@)\W)m;f = HZ(SKa A/)\-,r)m;r)

which does not vanish as 77;( # 0. Thus 7 contributes to H.(Sk, Zy,.). The character ¥z :
H ® E — E from Definition 2.9 induces a character H ® Og — Ogq, and thus a map

HRQOq — Oq HOQ/mA” =1L, (7.4)

where m)_ is the maximal ideal corresponding to A;. We also write mz for the kernel of this
composition. This is a maximal ideal of H ® Ogq, whose contraction to Ogq is my_ .

For any sufficiently large h, the localisation Hf (S, @Q)i? is independent of h, and in a slight
abuse of notation, we denote this H! (Sk, Z0)m.. As HL(Sk, Zq)S" is finitely generated, we may
freely use Nakayama’s lemma.

Let

To7(K) = [Ton(K)|n,
be the localisation of Tq ,(K) at mz, which acts on H:(Sk, Zo)m,. Let A denote the localisation
of Oq at my_. Theorem 7.6(a) follows from:

Proposition 7.8. The map sp,_: Do — D), induces an isomorphism
He(Sk: Za)m. @a AJmy, = H(Sk, Do, s (7.5)
In particular, mz is a mazimal ideal of Tq 1, (K) and hence there exists a point 7 € &qp(K).

Proof. As Q) C %Q" is smooth, we may choose a regular sequence of generators 711,...,7T;, of
my, . For j=1,...,mlet
Qj = Sp(OQ/(Tla 7TJ))7

then
QZQQDQlD"'DQm:{/\ﬂ—}

is a strictly descending sequence of closed affinoid subsets of €2 containing A.. Let A; be the
localisation of Oq; at my_, noting that Ag = A and A,, = L. We first prove a vanishing result.

Lemma. Foranyt>t+1, and any j =0,...,m, we have
H.(S, Zo,)m; = 0.

Proof of lemma. We proceed by descending induction on j. The case j = m follows from non-Q-
criticality; indeed if H.(S, 2y, )m, # 0, then 7 appears in classical cohomology in degree i from
Definition 3.14. But ¢ > ¢ is greater than the top such degree (see (2.6)), which is a contradiction.
Now suppose the lemma holds for j + 1. As
Daq, /Tj+1DQj = Dq, ®Oﬂj O, =Day .y,

J
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where the last isomorphism is Remark 3.12, we have a short exact sequence

XTj+1

0 — Dg, — Dq, — Dq,,, — 0, (7.6)

J+1

yielding a long exact sequence of cohomology. We pass to small slope subspaces and then localise

at mz; since these are exact functors, truncating at degree ¢ we get an injection
0— HE(S, ‘@Qj)mfr ®Aj AJ’/(TJ'-H) — Hf:(Sa ‘@Qj+1)m%'

By the induction step, we deduce that H.(S, Zq,)m, ®a, A;/(Tj+1) = 0. From Nakayama’s
lemma, the result follows for j, completing the induction. O

We return to the proof of Proposition 7.8. Let j € {0,...,m — 1}. Again truncating and
localising the long exact sequence of cohomology attached to (7.6), we obtain an exact sequence

0 = H(SK, Z0, )ms @, Aj/(Tj1) — HL(Sk, o, Jme — HETH(S, D0, )ms -
But the last term is zero by the lemma, showing there is an isomorphism
HE(SKa @Qj)mi ®Aj Aj/(Tj-H) = Hi(SKa @Qj+1)m€r'

The isomorphism (7.5) follows from descending induction on j.

For the last claim, we have H!(Sk, Zq)m. # 0 by combining non-Q-criticality and (7.5).
This is equivalent to mz appearing in Tq 5, (K), from which we deduce the existence of the point
z7(K).

O

We would also like an analogue of [11, Lem. 2.9(ii)], to show that H: (Sk, Zq)m, is Oq-torsion-
free. However the proof of that result does not work here, as the cohomology is not concentrated
in one degree. A key novelty of this paper is the use of evaluation maps to overcome this.

Remark 7.9. All we used to prove Proposition 7.8 was non-Q-criticality and cohomological
vanishing above the top degree t. Thus for any non-Q-critical Hecke eigensystem attached to a
Q-refined RACAR 7’ of G(A) of weight A, we see that sp, induces an isomorphism

HE(SKa -@Q)mi/ ®OQ,>\ OQ,)\/m)\ B HE(SKa @)\)mﬁ/-

7.3. Proof of Thm. 7.6(b): Components of maximal dimension. Let
%(K) = Sp(Ta,¢(K)) C ban(K)

be the connected component containing zz(K). There exists an idempotent e such that
To¢(K) =eTqp(K) is a direct summand, with € = Sp(Tq «(K)); then

H{(Sk, Z0)S" @1, (k) Tow(K) = eHi(Sk, Zo)S" (7.7)
C HY(Sk, Da)S".

Now fix K = K(7) from (2.23) and for convenience let
¢ =C(K(7), Taw=Taow(K(®) and zz=zz(K(7)).

Let ®z € H.(Sk(#), Zx, )m, be the class from Definition 6.22. By Proposition 7.8, we can lift
this to a class @/, € H.(S K(#) .@Q)ﬁf under the natural surjection sp,_. Possibly shrinking 2
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and ¢, we may avoid denominators in Tq ¢, and assume ®¢, € Hﬁ(SK(;,), Pq)Sh; then applying
the idempotent e attached %, we define

by = e(I)ég € Hi(SK(ﬁ—)7 _@Q)gh ®Tq., To%. (7.8)

As shrinking €2 and applying e doesn’t change local behaviour at 7, we still have spy (®¢) = ®x.
The following is the key step in all our constructions; we are very grateful to Eric Urban,
who suggested the elegant proof we present here. Recall Evg0 from (6.15).

Proposition 7.10. Suppose there exists B such that Evy (®z) # 0. Then Anno, (®¢) = 0, and
in particular,
H! (Sk(7), Z0)S" @1, Tae is a faithful Og-module.

Proof. By restricting the evaluation map of (6.15) to the summand (7.7), we get a map
Ev : HL(Sk (#), Za)" @1, Taes — D(Gal,, Oq) (7.9)
of Og-modules. From Proposition 6.15, we have
Py (EVZO(¢<5)) = EvzO (spy, (Pw)) = EVZO(@;r).
The right-hand side is non-zero by hypothesis, so we deduce that Evg0 (D) # 0.
Now let u € Oq such that u®4 = 0. Since EVZO is an Og-module map, we see
0= Evg0 (udeg)
= uEvy (®4) € D(Galy, Oq).

As Evy’(®%) # 0 and D(Gal,, Oq) is Og-torsion-free, we see u = 0, from which we conclude. [J

Corollary 7.11. Suppose there exists B such that Eviy’ (®z) # 0. Then, at level K(7),

(i) the Oq-algebra T« is faithful as an Og-module, and
(i1) there exists an irreducible component & C € in &q.p through xz with dim(#) = dim(2).

Proof. The Og-action on H(Sk (7)., Pq)S" is faithful (by Proposition 7.10) and factors through
the action of H ® Ogq, hence (by definition) the action of Tq . Part (i) follows.

For (ii), as H(Sk(z), Zo)S" and Tgq, are finite Og-modules, we deduce there are finitely
many irreducible components of £q 5, each of dimension at most dim(€2). Suppose every compo-
nent . through z;z has dimension dim(.#) < dim(€2). Then Suppy,, (Tq,«) (by definition, the
image of ¢ in Q under the weight map) is a closed subspace of €2 of dimension strictly less than
dim(©2). In particular it is a proper closed subspace. But by [46, Prop. 4.4.2], since T ¢ is a
faithful Og-module, we have Suppe, (Ta,«) = €2, so we conclude by contradiction. O

Corollary 7.12. Suppose m admits a non-zero Deligne-critical L-value at p. Then (at level
K (7)) there exists an irreducible component & in &g p, through xz such that dim(.#) = dim(2).

Proof. By hypothesis (Definition 7.3) there exists § with 8, > 1 for all p|p, a character x of
conductor p?, and j € Crit(\,) such that L(m x x,j + %) # 0. By Theorem 6.23, for an explicit

(non-zero) constant (x) we have
@) [ X e VP (@) = £y(F0dd)
=LV (r@x,j+75) #0.

Thus Evy’(®7) # 0. We conclude by Corollary 7.11(ii). O
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7.4. Proof of Thm. 7.6(c): (very) Zariski-density of Shalika points. We still take
K = K(7).

Lemma 7.13. If A\, is H-reqular in the sense of (7.3), then any neighbourhood Q of A in 7/)8

contains a very Zariski-dense set of reqular algebraic dominant weights.

Proof. Write A = (AL, \)) as a weight for H. If a weight \ € W)\Qw is of the form

A= (N + (@ ), N+ (b, D)),

where a,b € Z* are weights for Resp,/z(GL1) with a; > b, for all ¢ € ¥, then A is algebraic
dominant and H-regular. The set of such X is very Zariski-dense in ”//AQW.
Moreover, such a weight is regular if a, > b, for all o, as then Ay, o + a6 > Ar 1,0 + o

We conclude since a, = b, is a closed condition. O
Recall we fixed h € Q>¢. Now let Qs be the subset of weights A € ) such that

(i) A is algebraic, dominant and regular, and

(ii) ep(o)h <14 Aoin — Ag,ny1 for all o € ¥ (in particular, h is a non-Q-critical slope for A).
Since failure of (ii) is a closed condition, €2, is very Zariski-dense in by Lemma 7.13.

Proposition 7.14. Suppose 7 is strongly non-Q-critical and \; is H-reqular. Let ¥ = Sp(Tq )
be any irreducible component in &q p(K (7)) such that

o T contains xz(K (7)), and
o dim(#) = dim(9).
Then the classical cuspidal non-Q-critical points are very Zariski-dense in & .

Proof. Let Fyes == F Nw ™ (Ques). By [19, Prop. 5.15] (and its proof), S is very Zariski-dense

in . and every y € %, is classical cuspidal non-Q-critical, from which the result follows. [

In the proof of Theorem 7.6(c), we need a lemma. Note w=1(A\) N¥ is a finite set for all
Areq.

Lemma 7.15. Let € be as in §7.8 and A € Qyes. Reduction modulo my induces an isomorphism

HE (Sk(7), Z0)S" @1, (k7)) Taye/my = EB H. (S 7y P\ )m, -
yew -1 (A)NE

Proof. This is local at \ € 7//8, so we are free to shrink €2 to a neighbourhood of A with

¢ = I—lyEw_l(A)ﬂ% ng’

with each %, = Sp(T,) connected affinoid, and with w=1(A\) N ¢, = {y}. Note that ¢ itself can

be disconnected over this smaller Q. As
TQ,‘K = 69yEw_l(/\)F‘I‘za”’]:‘zﬁ
we have

H:(Sk(z), Z0)S" @1q, (k7)) Tae/ma

> P HSkm)»Z0) Org, k(7)) Ty/ma.
yew 1 (A)NE
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As y is the unique point of %, above A, in each summand of the right-hand side, reduction mod

my factors through localisation at m,; and since %), is the connected component through y, each
HE (Sk(7), Z0)N" @14, Ty C HA(Sk (7). Za)
is a summand, and
H.(Sk(7), Za)S" @1g, Tylm, = HA(Sk (7)) Z0)m, -
Thus

HE (Sk(z), Z0)S" @1q (k7)) Ty/mx 2 HE(Sk(7) Z0)m, @ AJmy
= H.(Sk () PA)m,

where the last isomorphism is Proposition 7.8, as each such y has non-Q-critical slope (since
A € Ques). Combining the last two displayed equations gives the Lemma. ]

We now complete the proof of Theorem 7.6(c). Recall € is the connected component of
&a.n (K (7)) containing zz, and let %, denote the set of classical cuspidal non-Q-critical points
y € €. Let €51 be the subset of points y € 6, such that 7, admits a global (ng|-|"v, 1)-Shalika
model, where w,, is the purity weight of A\, = w(y). Theorem 7.6(c) then follows from:

Proposition 7.16. Suppose the hypotheses of Theorem 7.6(c). Up to shrinking (), there is an
irreducible component & C € C &g n(K(7)) such that:

o Z contains xz(K (7)),
o dim(.#) = dim(R), and
o I NE s very Zariski-dense in I .

Proof. Let 5" be the Zariski-closure of €' in 4. We claim:
Claim 7.17. w(%5M?) is a (very) Zariski-dense subset of €.

The claim implies that w(%>"?) = Q, that is 5" has full support in Q. Given this, we
conclude that €% has an irreducible component .# of dimension dim(2), as &, (K (7)) has
finitely many irreducible components (see Corollary 7.11). Then .# satisfies the conditions we

require. Thus the proposition follows from the claim.

Proof of claim. Fix a character x of conductor p? and j € Crit(\,) such that L") (7 @ x, j +
3) # 0 (which exist by hypothesis). Considering xxJ,. € A(Galy, Oq) via the structure map
L — Oq, define

EVQ : Hé(SK(ﬁ-), .@Q) — Oq

X3
d — Xye - BV (@),
Gal,
for EVZO as in (6.15). Restricting under (7.7), EV;ZJ» defines a map HE(Sk(z), Zo)S" @1,
Tq.s — Oq, which we can evaluate at the class ® from (7.8). By construction sp, (®¢) = @z,

S0
spy, 0 BV’ (@) = Ev’(®z)
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by Proposition 6.15. Thus

[Evi(®%)] (Ar) = /G N XXlye - SPA (EVZ" (%))

— [ e (@) 20
Gal,
where non-vanishing follows as in the proof of Corollary 7.12. As the non-vanishing locus is
open, up to shrinking Q) we may assume that Evg,j(q)fg) € Oq is everywhere non-vanishing.

Now let A be any weight in Qycs, the set from §7.4. Since &q (K (7)) is finite over 2, the
preimage w~1(\) N ¥ is a finite set. From Lemma 7.15, for A € Qs we may write

spa(Pz) = By Py, (7.10)
with each ®, € H.(Sk(#), Zx)m,- Recalling 7, from (3.10), for each such y, we have
rA(@y) = Bera(®y) € DHL(Sk(r): 13 )i, = He(Sk(), 72 )m,

projecting into the decomposition over € of §2.3.4. Now by combining Proposition 6.15 and

Lemma 6.18, we have a commutative diagram

EQ

HL(Sk(z), Za)¢ % Oq
mospxi SPx
gi,no
HL(Sk ), 7V)° L.

Combining this with (7.10), and the fact that Evg, (@) is everywhere non-vanishing, we deduce

BV (@)= D D EN (ra(®)) #0.
yew—1(A)NE €
Hence at least one of the terms in the sum is non-zero. By Proposition 5.15, we deduce that if
this term corresponds to the point y, then m, admits an (1| - |, 4)-Shalika model (where w is
the purity weight of \). Thus above each A € Q,s, there exists at least one classical point y € €
corresponding to an automorphic representation m, admitting a Shalika model. In particular,
we deduce that Qe C w(E50?). Thus w(E5M?) is very Zariski-dense in €2, as required. O

7.5. Proof of Thm. 7.6(d—e): Etaleness of Shalika families. At this point we perform
a delicate switch in level to prove Theorem 7.6(d—e). Fix e € {£1}*. A key fact about the level
K (7) from (7.2) is the following:

Proposition 7.18. The vector space H.(Sk, (7 ”f/)\\:r)fn” is 1-dimensional.

Proof. The mx-torsion in 77?1(7?)

(2.18). By Proposition 2.3,

is a line; locally, this follows for v 1 p by (7.1), and for p|p by

dlmap HZ(SKl(ﬁ')? 4///\\1 (Qp))ren;r =L
We descend to L via §2.10. O

Recall A = Oq », is the algebraic localisation. Taking e-parts of Proposition 7.8 gives iso-
morphisms

H{(Sk, (7)> Z0) . ©a AJmr, = HL(Sk, (7), Drs )ims (7.11)
= HE(SKl(ﬁ')7 /7/\\1)1611;7
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of 1-dimensional vector spaces (where the second isomorphism is non-@Q-criticality). In particular,
there exists a point 25 (K1 (7)) in &g, (K1(7)) corresponding to 7. Let

sz,ﬁ(Kl(ﬁ)) = Ta,h(Kl(ﬁ))mm
which acts on H.(Sk, (z), Za)me’ (see Definition 2.9).
Proposition 7.19. There exists a proper ideal IS C A such that
T 7 (K1 (7)) = A/IE.

Proof. Since HE(Sk, (7), Za)S" is a finitely generated Og-module, HE(Sk, 7y, Za)G,. is finitely
generated over A; then Nakayama’s lemma applied to (7.11) implies that H.(Sk, (7), Za)q., is
non-zero and generated by a single element over A. In particular, it is isomorphic to A/I$ for

some proper ideal If C A. Now, we know that T, (K (7)) is the image of the Hecke algebra in
Endp (HE(SKl(ﬁ), 99);7?) = Endp(A/IZ) = A/IL.
But this image contains 1, so T, - (K1 (7)) must be everything, giving the result. O

To prove (d) and (e), we will combine Proposition 7.19 with Corollary 7.11(i) (which implies
T #(K(7)) is A-torsion free). To switch between levels K (7) and K;(7), recall the connected
component ¢ (K (7)) from §7.3, and:

o Let €/%°(K (7)) be the set of classical cuspidal non-Q-critical points y € € (K (7)) such
that Local-Global Compatibility holds for m, at all v. Note (as explained in §7.1.2) that
oo (K (7)) C 6,8 (K (7).

o Let €'#¢(K (7)) be the Zariski-closure of €'8(K (7)), equipped with the induced reduced
rigid analytic structure. This contains (the nilreductions of) all Shalika families through
z7(K(7)), so by Proposition 7.16, it contains an irreducible component of dimension
dim(Q?).

In the next subsection, we prove:

Proposition 7.20. Let 7 satisfy the hypotheses of Theorem 7.6(a—c), and suppose pr is irre-
ducible. Then, up to shrinking 2, for all y € €'8°(K (%)) and for all v € S, the Whittaker

nc

conductors of m, and my. are equal. In particular, wﬁ}(ﬁ) #£0.

Corollary 7.21. For any e € {+1}* there exists a closed immersion
LK (T)) < 66,5, (K1 (7))
sending (K (7)) to x5 (K1(7)).

Proof. This is a straightforward application of [55, Thm. 3.2.1], with the same Hecke algebra
‘H and weight space Q (by Remark 3.5) on both sides, with the identity maps between them.
To apply this, it suffices to prove that we have this transfer on a Zariski-dense set of points.
The subset of y € €°(K (7)) that have non-Q-critical slope is Zariski-dense in ¢"'&¢(K(7)).
For such y, by Proposition 7.20 and (2.11), we know H.(Sk, () ”I/)\V)fny # 0; then by (7.11) (cf.
Proposition 7.8, Remark 7.9) there is a point y(K:1(7)) € &5, (K1(7)) attached to the same
Hecke eigensystem as y. The transfer is then y — y(K1(7)) on the (Zariski-dense) subset of
non-Q@Q-critical slope y. O

Corollary 7.22. Let 7 satisfy the hypotheses of Theorem 7.6(a—d), and let e € {£1}*. Then
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(i) The weight map &G, (K1(7)) — Q is étale at 2z (K1 (7)).
(i) The natural map & ;,(K1(7)) — & n(K1(7)) is locally an isomorphism at xz(K:1(7)).
(iii) The weight map &q.pn(K1(7)) — Q is étale at xxz(K1(7)).

Proof. (i) It suffices to prove that the ideal If from Proposition 7.19 is zero. Suppose it is
not; then every irreducible component of &g, (K1 (7)) through z%(K:(7)) has dimension less
than dim(Q). But ¢'#°(K (7)) has a component of dimension dim(£2) through x< (K (7)) by the
discussion before Proposition 7.20; under ¢ this maps to a component of dimension dim(f2), which
is a contradiction.

(i) Let € # €, and €, %4 be the connected components through # of &S p(K1(7)) and
é”{z:h(Kl (7)) respectively. By above, ¢ and €< are étale over Q and contain Zariski-dense
sets €

nc?

‘éf; of points corresponding to the same set of Q-refined RACARs {7, },. By another
application of [55, Thm. 3.2.1], there exist closed immersions

CE s € €

over  that are the identity on {7 },; hence ¢ and ¢< are canonically identified, and € is

independent of €. At 7, since the Hecke algebra preserves e-parts in cohomology, this means that
Toz(K1(7)) = T 2 (K1(7))
as A-modules, and part (ii) follows. Part (iii) is immediate from (i) and (ii). O

Modulo Proposition 7.20, this proves Theorem 7.6(d1). For (d2), let €' (K (7)) be the
nilreduction of >"*(K (7)). By the discussion before Proposition 7.20, and Corollary 7.21, we
have a diagram

¢ (E () C ‘ﬂg‘:(f (7)) &0 (K1(7)) -

As €52 (K (7)) contains an irreducible component of dimension dim(f2), and & , (K (7)) is
étale over , we deduce €5 (K (7))™4 is étale over ; hence €M (K (7)) contains a unique
irreducible component, giving (d2). If Local-Global Compatibility holds for all RACARs, then
¢'e(K (7)) = €(K (7)), and the same argument shows this is étale over (2, giving (e).

7.6. Level-switching: local constancy of conductors. It remains to prove Proposi-
tion 7.20. We use Galois theory. Let y € €18°(K (7)), with attached p-adic Galois representation

pr, : Gr — GLa, (L) C GLy,(Q,),
depending on ¢, : C = Qp. Attached to m, and v € S, we have

o the Whittaker conductor m(m, ,) from (7.1), and

e the Artin conductor a(px,|cy,) of the restriction of p;, to Gr,, defined by Serre in [74].
Proposition 7.23. Ify € €,£°(K (7)), then for any vt p, we have m(my.) = alpr, |G, ).

Proof. Let m and a denote the conductors. Let py ., = pr,|cy, , and WD(p, ,) its associated
Weil-Deligne representation. By Local-Global Compatibility (see §7.1.2) we have

WD(pyﬂ,)F*SS = Lprecy, (7Ty,,u ®|- |(17n)/2).

Fix an unramified non-trivial additive character v, of F, and let ¢, = #0O,/w,. Then:
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~ py.» and WD(p, )7 have the same Artin conductor a (e.g. [80, §8]);
~ the map recp, preserves e-factors [48], so &(s, 7y, | - |1 7/2,4b,) = (5, WD(py.»), ¥v);
— by [78, (3.4.5)], we have e(s, WD(py ), %) = C - g, ** for C € C* independent of s;

< by [51, (1),Thim. §5], £(s, w0l <1702, 00) = 254+ (1= 1)/2, iy, 0) = € g, "0
q, ™, for C’ € C* independent of s.

Hence C = (C" - q[m<17n)/2 and a = m, as required. O

The study of m(m,,) in families is thus reduced to that of a(px,|c,, ), and hence can be
studied via Galois theory. For simplicity, let '8¢ = €'2¢(K (7)) and €8¢ = €&¢(K (%)).

Lemma 7.24. Suppose p, is irreducible. Then possibly shrinking €2, there exists a Galois rep-
resentation

Pglec * GF — GLQ(O%I{;C)
such that for all y € €8, we have pr, = Pegrze (mod my).

nc ’

Proof. Let v = (1,0, ...,0) € X} (T2y,). For each v ¢ SU{p|p}, we have a Hecke operator T,,,, € H
as in §2.4. If y € €8¢ corresponds to the character ¥, : H ® L — L, then we have

Uy (Ty) = Tr(Pﬂy (Frob,))

(see e.g. [32, Cor. 7.3.4]). In particular, property (H) of [32, §7.1] holds, where we take a, ibid.
to be the image of T}, in Ogiec under the natural map. Then by [32, Lem. 7.1.1], there exists a
2n-dimensional Galois pseudo-character

t<g1gc : GF — O(ﬁlgc

over €8¢ such that for all v ¢ S U {p|p} and all y € €/%°, we have

sp, (tgiee (Frob,)) = pr, (Frob,).
As p is irreducible, by [22, Lem. 4.3.7], there exists a lift of t¢iec to a Galois representation
pgize : Gp — GLap (Ogree)
with e = tr(pe); and pr, = pgrze (mod my). O

Proposition 7.25. Let v € S with residue characteristic £ # p. After possibly shrinking §2, the

Artin conductor a(px,

Gr,) 15 constant as y varies in ¢'ec. Hence Proposition 7.20 holds.

Proof. Let (r,N) = WD(pgizc|ap, ) be the family of Weil-Deligne representations associated to
pee at v [22, Lem. 7.8.14]. By construction, the specialisation (r,, N,) of (r,N) at y € €8¢
is the Weil-Deligne representation attached to pr,|ay, , and then by definition (see [80, §7]), we
have

a(pr,lar,) = a(ry) + dim (TZI;’) — dim[ker(N,) N TZI!’J], (7.12)

with a(ry) the conductor of r, (depending only on ry|r,). By [22, Lem. 7.8.17], r|;, is locally
constant over ¢'8°, so we can shrink 2 so a(r,) and dim(r}f) are constant as y varies in €.
Now note that since 7 is essentially self-dual, the specialisation (r,, N;) = WD(pr|ay,) is
pure. Indeed, it suffices to check this after passing to the base-change II of 7 to a quadratic CM
extension F’/F in which v splits as ww. By [34, Lem. 4.1.4, §4.3] there exists an algebraic Hecke
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character y over F” such that II' := I ® x is self-dual, and then [29, Thm. 1.2] shows that IT/, is
tempered, so has pure Weil-Deligne representation. But purity is preserved by algebraic twist.
Combining [22, Prop. 7.8.19] with [71, Thm. 3.1(2)], purity at x implies that for all y in a
neighbourhood of z, we have N, ~ N, in the sense of [22, Defs. 6.5.1, 7.8.2]. This implies that
dim[ker(N,) Nryr] — and hence a(px, |ay, ), by (7.12) — is constant for y in a neighbourhood of .
Proposition 7.20 now follows by combining this with Proposition 7.23. O

7.7. Remarks on symplectic components. The space &g (K) studied in this section is a
local piece of a global parabolic eigenvariety é"ﬁ (K) varying over Wﬁ, constructed in [19, §5.2].
(Precisely, we take x = ¢ in the notation op. cit.; that is, this is a ‘top degree’ eigenvariety). Here
Ao is any algebraic weight in 2. We have described its local geometry at certain Shalika points.
We now comment on global implications, proving:

Theorem 7.26. Let . C é”fgo(K) be an irreducible component, where K is some parahoric-at-p
level. Suppose F contains a Shalika point zz attached to a Q-refined RASCAR 7 that is spherical
and reqular at p and satisfies the hypotheses (a—d) of Theorem 7.6, and that K = K;(7%). Then
every classical point of & with non-Q-critical slope and reqular weight is a Shalika point.

We will prove (in Theorem 7.34) a stronger result. Let G := Resp/qGSpiny,,,; be the split
spin group. If 7, is a Shalika point in .#, then 7, is the functorial transfer of a RACAR 1I,
of G(A) (see §1.1). By [14, §3.1], there is a refinement II, of T, corresponding to 7,. We
show there is an irreducible component .#9 in a parabolic eigenvariety for G, and rigid analytic
maps between the (nilreductions) of .# and .#9 that interpolate the correspondence 7, ¢ II,
and induce bijections on their sets of points. Thus every eigensystem in .#, classical or not,
is symplectic, a functorial transfer from G. For non-Q-critical slope classical points of regular
weight, symplectic is equivalent to Shalika (see Proposition 7.33), so the theorem follows.

The proof occupies the rest of this section; we sketch it now. One has a natural map from the
Hecke algebra for G to that for G, compatible with Langlands functoriality, induced by a map
7V on cocharacters. It also admits a natural section +V. Using ¢V, and properties of Langlands
functoriality, one can transfer a Zariski-dense set of Shalika points in .# from the eigenvariety
for G to that for G. Using an idea of Chenevier, this interpolates to a map f on the nilreduction
of .#. Let .#9 be the irreducible component containing the (irreducible) image. Applying the
same argument in reverse, with 7V, gives a map ¢ the other way inverse to f on points.

Remark 7.27. A more detailed study of these phenomena, for all parahoric levels, is the subject
of [14]. As a flavour: in the Iwahori-level eigenvariety, the analogue of Theorem 7.26 (for classical
points) should hold, but the stronger analogue (on non-classical points) should not. In the
language op. cit., take a non-critical slope Iwahori refinement of 7 that is optimally @-spin. This
varies in a dn+ 1-dimensional component .# in the Iwahori eigenvariety, but the symplectic locus
is a closed d 4+ 1-dimensional subspace. In [14] we conjecture that the classical points in .# lie in

the symplectic subspace; but there should exist non-classical non-symplectic points in ..

7.7.1. Hecke algebras for G and G. Fix a Borel pair (B,T) in G, as in [14, §2]. Attached to
@ C Gisaparabolic @ C G, described in [14, §2.1]. Let J, be the associated parahoric subgroup.
Let U, be the associated normalised Hecke operator (U, ,, in the notation op. cit.).

Let S be the set of finite primes v { p where K, is not maximal hyperspecial, and let IC =
[1, v € G(AF,f) be open compact such that I, is maximal hyperspecial for every v & SU{p|p},
sufficiently small at v € S, and Ky = Jp. Let (H9) = Qp[Tow : v € X (T),v & SU {p[p}] be
the spherical Hecke algebra for K, where X (7)) is the space of B-dominant cocharacters of T~
and 7., = [Kyv(@,)Ky] (as in Definition 2.1). Let HY = (H9)'[Ug : p[p].
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Henceforth replace the Z-module H (from §2.9) with H ®z Q,. In [14, §2], a map ¥ :
X.(T) — X.(T) is defined. This induces a map

PR =HI, U Uy, T Ty
In the other direction, there is a natural ‘section’
V' Xo(T) — X.(T) ®z Z[1/n]
such that ¥ o 3V is the identity, given in the notation op. cit. by
V= V() = e+ e/

The denominator means this does not, however, induce a map HY — H. To get around this, for

v g SU{p|p} let
Zv = Te’{+~-»+e;‘“v = [deiag(wm ceey wv)Kv]a Zv = 7}8,1}

be the operators attached to ef + --- + e and f§ respectively. Then 3V(Z,) = Z*. Any map
HY — H induced by ¢V must send Z, to an nth root of Z,. We now make sense of this.

The operators Z, and Z, act respectively by diag(cwy,...,w,) and f§(w,), elements of the
centre of G(F,) and G(F,) (by [4, Prop. 2.3]). Hence they act by the central character evaluated
at w,. If mis a RASCAR of G(A) with an (7,)-Shalika model, then its central character is n",
and it is the transfer of a RACAR II of G(A) whose central character is n (by [4, p.178]).

This observation allows us to formally define an nth root of Z, over the irreducible compo-
nent #. Note (as in Definition 7.2) Z, acts on cohomology at any (7, %)-Shalika point y by
[no(wv)|wq,|wy]n. This varies analytically over any affinoid 2 C WAQW; let

nQ(wv) = Uo(wv) : WQ(lva € Oé,

for wo as in (3.7). Note this is well-defined as v { p, so |@,| € Z,\. Then nq(w,)" interpolates
the action of Z, on (1o, 1)-Shalika points 7, in .# above Q. Such points are Zariski-dense in .¢
by Theorem 7.6, so we deduce Z, acts via the functions 7 (w,)™ over all of .&.

Definition 7.28. Let z, be a formal variable, and let
o= M|z 0 ¢ SUpI} /(2. - 22).
We may summarise much of the above discussion via:

Lemma 7.29. The map 3V : H — HY extends to a surjective map 7% : H — HY. This map has

a natural section given by
W ZHg—>7'~[7 UPOHU;Jy 7:/,v'_>TLV(u),v~

Proof. The extension is defined by 3V (2,) = Z,. It is surjective as every generator 7, and U,

is hit. One sees from the definitions that ¢V is a section. O

Remark 7.30. For affinoids 2 C Wﬁ, and M an ‘H ® Og-module upon which Z, acts by
na(w,)™, the action extends to H ® Oq, where z, acts by na(w,). From above, this is true for
M =H!(Sk, Zq) ®o, O.s, the specialisation of the cohomology to .#.
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7.7.2. Eigenvariety data. By [55, Cor. 3.1.5], we may recover .# as the eigenvariety attached to
an eigenvariety datum

D= (W()?)\Wvgﬂv%tja}[vw)
in the sense of Definition 3.1.1 op. cit. (where the Fredholm hypersurface Zs and degree ¢
cohomology sheaf .#%, = # @ Oy are specialised to isolate .#). We define a modified datum
ZND = (%%ﬂ7gf7%}7ﬁ7qz)'
Here H acts on A", by Remark 7.30 (giving ):H— End(.#';)). This gives an eigenvariety 7.

Lemma 7.31. The inclusion H — H induces an isomorphism .9 = 7.

Proof. The image of z, ® 1 € H ® Oq in Ende,, (HL(Sk, Za) @0, O.s is, by definition, equal to
1 ® 1 (w, ), which is also in the image of H ® Og. As this is the only difference between H ® O,
and H ® Oq, they have the same image in this endomorphism ring, so the local pieces of .# and
# are the same. As the gluing data in [46, Thm. 4.2.2] depends only the local pieces, not the

abstract Hecke algebra, we conclude. O

Finally, as in [19, §5.2.2], at level K there is an eigenvariety datum
Dg = (W)\Cia gga %gaHg7wg)

which gives the Q-parabolic eigenvariety gfﬂg(lC) for G. (Note that j, from [14, §2], identifies
the Q-parabolic weight space for G with the @-parabolic weight space for G).

7.7.3. Symplectic points.

Definition 7.32. Let y € o(”fi (K) be a point with corresponding eigensystem ¢, : H — L. We
say x is symplectic if there is a point y9 € éDAQOQ(IC) for some KC, such that ¢, factors as

2 4,6 O
¢y H—H — L,
where (;55 is the eigensystem corresponding to y.

Proposition 7.33. If y € gﬁ(K) is a classical point with non-Q-critical slope and regular
weight, then y is a symplectic point if and only if it is a Shalika point.

Proof. Suppose y is a Shalika point. Let 7, and f[y be as described after the statement of
Theorem 7.26; then ¢, = ¢z,. By compatibility of Langlands functoriality (at v { p) and [14,
Prop. 3.7] (at p|p) ¢, factors as

v b
¢z, H > HI —5 L. (7.13)

It remains to show fIy appears in an eigenvariety for G. Let K C G(AF ) be open compact as
above (maximal hyperspecial at v ¢ SU{p|p}, parahoric at p|p) such that II}; # {0}. By [14, §3.5],
the refinement T, has non-Q-critical slope, so by [19, Prop. 5.8], yields a point y9 € é"/\gﬂQ(IC)
corresponding to gzﬁﬁy, and y is symplectic.

Conversely, suppose y is symplectic; then by [14, §3.5], y9 is non-Q-critical slope in é’fo’g(lC).
Using regular weight, as in the proof of [19, Prop. 5.15], 49 is classical cuspidal, corresponding
to some RACAR II,, of G(AF). At v ¢ SU {p|p}, II, , is unramified; by considering the Satake
parameters and using [4, §6] we see that 7, , is the functorial transfer of IT,, ,,. By [5] this ensures
my is globally the transfer of II,. Thus 7, admits a Shalika model, as required. O
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Theorem 7.34. Let ¥ C é”ﬁ (K) be an irreducible component satisfying the conditions of The-
orem 7.26. Then every point of % is a symplectic point.

Proof. We maintain the notation from the proof of Proposition 7.33. By [5, Prop. 5.1], which
controls the image of functorial transfer at ramified places, we may choose I C G(Ap,f) as above
such that Hf # {0} for all such y; we work at this level for G.

We have the following ‘inverse’ of (7.13); extend ¢z, to ¢z, : H — L by sending z,
Mo ()|, [". As ¢¥ is a section of 7, ¢ factors as

o, i HI AL L (7.14)
As in the proof of Proposition 7.16, a neighbourhood % of the given point 7 contains a Zariski-
dense set of non-Q-critical slope (7, %)-Shalika points y € %. By [37, Lem. 2.2.3], this set is
also Zariski-dense in .#. By Proposition 7.33, we have associated points y9 € <§’/\g0’Q(IC).

Let .#° denote the nilreduction of .#. By [55, Thm. 3.2.1] and (7.14), the map ¥ induces a
map g : .#° — gl\gﬂQ(IC) interpolating the association y + y9 for the Zariski-dense set of (19, )-
Shalika points y € .. Conversely let .#9 be the irreducible component containing g(.#°), and
#9° its nilreduction. By the same theorem and (7.13), ¥ induces a map f : £9° — .#.

As nilreductions do not change closed points, and S is isomorphic to .# by Lemma 7.31, the
maps f and g induce inverse bijections on the sets of closed points in .# and .#9. By [55, Thm.

3.2.1] again this means every eigensystem in .# factors through 7V, and hence is symplectic. [

Theorem 7.26 follows immediately by combining Theorem 7.34 with Proposition 7.33.

8. p-adic L-functions over the eigenvariety

Finally we construct p-adic L-functions in families and prove Theorem C of the introduction.
To do so, we pursue a similar overall strategy to that in single weights. In the single weight
situation, namely row (M) of Figure 1 of the introduction, we:

(1) replaced #}Y with a larger coefficient sheaf 2, and found a single evaluation map Evy :
H!(Sk, Z») = D(Gal,, Q,) interpolating all the Ev, ;;

(2) exhibited a canonical eigenclass @z € H.(Sk, Z)), constructed via a choice of Friedberg—
Jacquet test vector W7 e SZ; (mf).

In the top row (T) of Figure 1, we instead work over a Shalika family € in the eigenvariety, and
we need to:

(1) replace 2, with Zq and construct an evaluation map Evq : H.(Sk, Za) — D(Gal,, Oq)
interpolating the maps Evy as \ varies in €);

(2') exhibit an eigenclass @ € H!(Sk, Zq) over € interpolating, up to 6: , the eigenclasses
®5, as y varies over Shalika points of €.

This would give the top commutative square in Figure 1. We have already handled part (1’) in
§6, and in this section, we explain how to obtain the eigenclass & of (2').

In §7, we proved existence and étaleness of Shalika families, but had to consider and compare
two separate levels K(7) and K1(7) to do so. To vary p-adic L-functions over these families
requires more precise control still, since for (2') we must show not only that 7 varies in a
Shalika family, but that specific vectors inside these representations — the cusp forms VV}J T from
§2.10 — also vary p-adic analytically in this family. In this chapter, we prove such variation if
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m satisfies an automorphic hypothesis (Hypothesis 8.6). This is captured in Theorem 8.11, a
modification/strengthening of Theorem 7.6 tailored for variation of p-adic L-functions. This is
Theorem B’ of the introduction, and is proved in §8.3.

Hypothesis 8.6 is automatic in tame level 1 (that is, when 7 is spherical at all v { poo), so
our results are unconditional in this case.

In §8.4, we use Theorem 8.11 to construct the multi-variable p-adic L-function and prove
Theorem C. Finally in §8.5 we give an application of this construction; suppose 7 satisfies
our running assumptions, and is non-Q-critical but has @-critical slope. In this case the slope
condition of Proposition 6.25 does not apply, and we could not previously show that £,(7) was
uniquely determined. In §8.5, we show that when the multi-variable p-adic L-function exists,
L,(7) is uniquely determined by interpolation over the family.

An unconditional treatment of higher tame level would require new input from local repre-
sentation theory. We describe these representation-theoretic obstructions in §8.1, and give our
hypothesis to relax the tame level 1 restriction in §8.2. Since these problems are of a very differ-
ent nature to the methods developed in the rest of this paper, we do not attempt to prove this
hypothesis here.

8.1. On the choice of local test vectors. Suppose 7 satisfies (C1-2) of Conditions 2.8.
Recall from §2.4 that

S = {v {poo : m, ramified}.
To vary the cusp form WfF b = ®@,WF in a p-adic family, we need control on the local vectors

WEJ. For this, there are three natural cases:

~ v =p|p. At such v, the choice of local vector W}? = W, is prescribed by the choice of
Q-refinement in condition (C2) of Conditions 2.8.

— v {poo, and v ¢ S (i.e. 7, is spherical). In this case, we have complete control over the
choice of WY7: as outlined in §2.6, the spherical vector in SZ’: (my) is a Friedberg-Jacquet
test vector, i.e.

G (5 + 5 W5, 30) = Nejq@) (@)™ L(m@xes+3).  (81)

—v{pooand v € S (i.e. 7, is ramified). In this case, the choice of Friedberg—Jacquet test
vector WE7 is not well-understood; the proof of its existence is not constructive.

When S = @ (that is, we are in the case of tame level 1), this means we have control on W}/
at every finite place v. In this case, we have

K(7) = Ki(7) = [[ /o ][] GL2n(Ov).
plp wipoo

Crucially, this means:

Proposition 8.1. Let & be a non-Q-critical Q-refined RACAR satisfying (C1-2) of Condi-
tions 2.8. Suppose w has tame level 1. Then
(1) SZ’; (ﬂ'?(ﬁ—)) [Uy — ay = plp] is a line, and
(2) this line has a generator
WE = By Wy By W

v

where each Wy, is as in (C2) and each WE? is a Friedberg-Jacquet test vector.
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Later in this chapter, we show that these two properties imply WfF J varies analytically over
the eigenvariety from §7. This allows us to construct a p-adic L-function over any tame level 1
eigenvariety.

For ramified 7, finding an explicit Friedberg—Jacquet test vector W7 is an interesting and
difficult research question in local representation theory, of a very different flavour to the p-adic
methods and results of the present paper. To generalise our constructions to higher tame level,
at v € S we want to show something like:

(1’) there is an explicit open compact subgroup K, C GL2,(0O,), and a 1-dimensional subspace
of mXv cut out as the generalised eigenspace of a family of Hecke operators;

(2") the image of a generator of this line under SZ’; is a Friedberg-Jacquet test vector in the
Shalika model for .

The theory of Whittaker new vectors, as described in (7.1), gives an unconditional source of
explicit K, such that (1) is satisfied (without needing to use any Hecke operators). Evidence of
some natural compatibility between the Whittaker and Shalika models is provided by a recent
result of Grobner-Matringe [44]. There, it is shown that if 7, is unramified, and W, € S)* (7, is
fixed by K1, (m(m,)) — that is, W, is the image of a Whittaker new vector in the Shalika model
— then W, (12,) # 0. The natural question of whether such a W, is a Friedberg—Jacquet test
vector, however, appears very difficult to check.

8.2. Shalika new vectors. It is natural to ask if there is a Shalika analogue of the theory of
Whittaker new vectors. In §8.2.1, we introduce a theory of Shalika new vectors, and in §8.2.2,
give examples to show our theory is non-empty. In §8.2.3 we hypothesise that Shalika new vectors
are Friedberg—Jacquet test vectors.

8.2.1. Shalika conductors. Let ¢ > 1 be an integer. Rather than the subgroups K ,(c) used in
the Whittaker theory, we consider the ‘Q-parahoric’ analogue

€)= (w'ﬁ - My (0,) GL"(O”))

= {9 € GL2,,(0,) | g (mod @) € Q(O, /) } .
We also set J,(0) = GLo,(O,). Note that J,(1) is just the parahoric subgroup J,,.

Definition 8.2. Suppose 7, is an irreducible admissible representation of GLa, (F,) that admits
an (1, ¥, )-Shalika model.

(1) The Shalika conductor ¢(m,) of m, is the smallest ¢ € Z> (if it exists) such that

Sy (77;)]”(6)’”“) = {Wv € Sy ()

Wo(— k) = ny(det(k2)) Wy (=) Vk = (k*l /:2) € JU(C)} 7 {0}

(2) If SZ? (77{,]“(6(”“))’"“) is a line, we call a Shalika new vector any generator of this line.

Lemma 8.3. Suppose m, is an irreducible admissible representation of GLay, (F),) that admits an
(v, ¥y)-Shalika model. Then the Shalika conductor c(my,) € Zxq exists.

Moreover for any ¢ > c(m,) one has dim(ﬂ{,]”(cﬂ)’n“) > dim(r)" ().
Proof. As m, admits an (7,,,)-Shalika model, the Friedberg—Jacquet linear functional [41] is a
non-zero element of Hom g (o, )(my, 7). As H(O,) is compact, one therefore has Homg (o, ) (10, m0) #

{0}; that is, there exists a non-zero vector ¢ € i (©v)me
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As ¢ is smooth, there exists some ¢ > 0 such that ¢ is fixed by Ng(w;0O,) and N (w;0,).
Let t, = diag(wyIn, In). Since J,(2¢) = t,,*No(w@w;O,) H(O,)Ng (w;0,)t5, we deduce ¢, - ¢ €
m{"(Qc)’n”. Thus for ¢ > 0, the space in Definition 8.2(1) is non-zero, so the conductor exists.

For the proof of the last claim, to ease notation, we will drop 7, from the exponent. As

w;]’”(c) - ﬂ'{,jv(cﬂ), it suffices to prove that the inclusion is strict.

o If ¢ =0, then 7, is spherical, and dim(m‘]“(l)) =(27) > 1 (see e.g. [38, §3.1]).

(c) Jy(c—1)

If ¢ > 1, let ¢ be an element of 72" which we can inductively assume not in .
Suppose that 7;°“tY = 77 Note t-1 g e myte To(@t and

Jo(c+1) Ct;t-Jyu(c)-ty,

hence

Jy(e+1) _ _Ju(c)
v - Trv .

tv_1 pETm

We thus deduce
—1
pE Wff’ Ju(e)ty ,

so ¢ is fixed by both J,(c) and t,J,(c)t; !, and hence by the group J’ C GLa,(F,) that they

v
»(c—1)

generate. To obtain a contradiction with the assumption that ¢ ¢ m‘)] , it suffices to show

Jo(c—1)cJ'. (8.2)

e Suppose ¢ > 2. Then J,(c — 1) admits a parahoric decomposition J,(c — 1) = [J,(c —
1) N NG (0,)] - H(O,)Ng(O,) = ty[Ju(c) N N (O]t - H(Oy)Ng(O,). This lies in
tody(c)tyt - Jy(c) C J', as required.

e If ¢ =1, then observe that
H(O,)Ng(0,) C J,(1) c J’

and
NG (0y) = tyNo (@00t ' C toJy (1)t C T,

In_1 In1 1,1
01 _ —11 10
10 - 10 11
In_1 In—1 I

Both elements in the product are in (?7?), so this element lies in J”, and we are done. [

hence

We put the theory of Shalika new vectors in a form closer to Proposition 8.1(1). For ¢ = ¢(m,),
let
J(c) = ker|n, o dety : J,(c) — C*]

and consider the (diamond) Hecke operators
Sa, = [J](c) diag(1,...,1,ay) J)(c)], a,€OF.
Lemma 8.4. Any 7, as in Lemma 8.3 admits a Shalika new vector if and only if
dimg 7,7 (7)) [Sa,v — () sy € OUX] =1. (8.3)

Proof. For a,, € O, let t,, = diag(1,...,1, ). Via dets, one sees that {t,, : a, € O} contains
a complete set of representatives for J,(c(m,))/J(c(my)). Additionally the Hecke operator S,
is simply right translation by t,,. Hence (8.3) is a reformulation of Definition 8.2(2). O
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8.2.2. Shalika new vectors for parahoric-spherical representations. If m, is spherical, then it has
Shalika conductor 0, and a spherical vector is a Shalika new vector. The following lemma shows
that both possibilities arise even in the simplest case when n = 4 and =, is parahoric-spherical,
i.e. has non-zero vectors fixed by the parahoric subgroup J,. We are indebted to David Loeffler
for having drawn to our attention that such counter-examples exist, and to Andrei Jorza for
having helped us find some (positive) examples.

Lemma 8.5. Let St, denote the Steinberg representation of GLa(F,).

(i) Let m, be the full parabolic induction from Q(F,) to GL4(F,) of St, x St,. Then m, is

parahoric-spherical and admits a Shalika new vector.

(ii) Let P denote the (1,2,1) parabolic of GL4 and let 7, be the full parabolic induction from
P(F,) to GL4(F,) of 1 x St, x 1. Then =l is parahoric spherical but does not admit a
Shalika new vector.

Proof. Let us first observe that both , and 7] are ramified representations admitting a Shalika
model for 7, = 1. We realise the Weyl groups Wg and Wp as the subgroups of the Weyl group
Sy of GL4 generated respectively by {(12),(34)} and {(23)}. Let {81, B2, 83} denote the simple
roots of GLy. Note the parabolic subgroups @ and P correspond to the subsets {f1, 85} and
{B2} respectively.

(i) Tt suffices to show that dimc 7/» = 1. One can easily check that a set of representatives

of the double coset W\ Ss/Wq is given by W = {(1), (23), (13)(24)}. By [39, §1] the dimension
of 7J» is given by the number of w € W such that w - {31, 83} N {B1, B3} = @. This is only the

case for w = (23).

(ii) Tt suffices to show that dimgm)® > 1. A set of representatives of the double coset
Wp\Sy/Wq is given by W = {(1),(123), (1243), (243)}. In this case, there are two elements
w € W', namely (1) and (1243), for which w- {81, 3} N{B2} = &. The same argument as above

shows that the space of J,-invariants in 7, is 2-dimensional. O

We refer the interested reader to [39, §1] for a full classification of the parahoric-spherical
generic representations of GLg,, admitting a Shalika model.

8.2.8. A hypothesis on Shalika new vectors. Given the above theory of Shalika new vectors, it
seems natural to make the following hypothesis.

Hypothesis 8.6. Let ¢ € Z>o. For any m, admitting a Shalika new vector of conductor c, a

multiple of the latter is also a Friedberg—Jacquet test vector for m, (as in §2.6).

As evidence towards this, we note that Friedberg—Jacquet [41, Prop. 3.2] proved that Hy-
pothesis 8.6 holds for ¢ = 0 (see also §2.6). Further, in [39, §1] it is shown that the 7, admitting a
Shalika new vector of conductor ¢ = 1 are precisely the parahoric-spherical representations which
are maximally Steinberg, and further, it is established in [39, §2] that for such 7, Hypothesis 8.6
holds provided that 7, is regular (i.e., occurs in Indgﬁv with 6, regular).

8.3. Shalika families, refined.

8.8.1. Set-up: Shalika Hecke algebra and the eigenvariety &°. Let @ be a non-Q-critical Q-
refined RACAR of weight A, satisfying (C1-2) of Conditions 2.8. Recall S = {v { poo :
7, ramified}. For the rest of this chapter, we assume that:
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for allv € S, the local representation m, admits a Shalika new vector of conductor
¢(my), and Hypothesis 8.6 holds for ¢ = ¢(m,).

We emphasise again that this assumption is empty when 7 has tame level 1.
Given these assumptions, for the rest of the paper we fix a sufficiently large coefficient field
L/Q, as in §2.10, and drop it from notation. We also fix a precise choice of level subgroup

K(7) =11y Jp - [oes 40 (c(m0)) [Logsugppy GLlen(On) C G(Ay). (84)

Recall the Hecke alegbra H from Definition 2.9. In light of Lemma 8.4, it is necessary to
modify our Hecke algebra by adding the diamond operators S, .

Definition 8.7. The Shalika Hecke algebra of level K (7) is
HE :=H[Sq, : v E S,a, € OF].
This acts on 75(7) and H2 (Sk(#), —)-

We define some modified objects exactly analogous to their incarnations in §7, but with H*
replacing H. Recall 1z from Definition 2.9 (noting F C L).

Definition 8.8. Define a character ¢Z : H° ® L — L extending ¢z by sending S, +— n(ay).
Let mZ := ker(¢3) be the associated maximal ideal. For Q@ C W)\Ci a neighbourhood of A;, as in

(7.4) we get an associated maximal ideal, also denoted m%, in H® ® Oq.

Proposition 8.9. Let 7 satisfy Conditions 2.8 and assume Hypothesis 8.6 for v € S. For any
e € {£1}%,
dimz He (Sk(z), Pa% s = 1.

If 7 is non-Q-critical, then
dimp, HZ(SK(ﬁ—), 9/\77);5 =1.

Proof. As in Proposition 7.18, the mZ-torsion in 77;((7?) is a line; for v € .S, this is by Lemma 8.4

and the assumed existence of a Shalika new vector. We conclude
dimp, He (S (7), 3l Js = 1
exactly as in Proposition 7.18. If 7 is non-Q-critical, then the rest follows as
HS (Sk(7)s Dan)ms = HE(Sk(7)s VAL Jms
as Koo /K2 -modules. O

Via §3.3, let © be an affinoid neigbourhood of A; in %Qﬂ such that Hﬁ(SK(;T), Pq) admits a
slope < h decomposition with respect to the U, operator.

Definition 8.10. o« Let T§ ,, be the image of the natural map
HS ® Oq — Endo,, (H.(Sk(2), Za)S").
o Let &3, = Sp(Tq, 1)
o For e € {£1}*, write T;Eh and @@é; when using only e-parts of the cohomology.

o For a classical cuspidal point y € &5, (for terminology as in §7.1), we write my = m;?ry.

When 7 has tame level 1, then H = H®, mz = m3, 55; = 631 €te., so these are all the
exactly the same objects as in §7.
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8.3.2. Shalika families, refined: statement. The following is a more precise version of Theorem
B/, refining Theorem 7.6. We recall that we have fixed the level subgroup K(7) and coefficient
field L (in §8.3.1), and we drop both from further notation. Let ap = [[,,(ep)®, and fix
h > vp(a) and € € {+1}*. By Proposition 8.9, 7 contributes to H(Sk(x), Za, )"

Theorem 8.11. Let T be non-Q-critical satisfying (C1-2), and suppose that w admits a non-zero
Deligne-critical L-value at p (Definition 7.3), that A, is H-regular (7.3), and that 7 is strongly
non-Q-critical (Definition 3.14). Suppose that for allv € S:

- 7, admits a Shalika new vector of conductor ¢(m,), and
— Hypothesis 8.6 holds for ¢ = ¢(m,).

Then there exists a point x5 attached to 7 in &3 ;,. Let € be the connected component of &3,
through x3. Then, after possibly shrinking €0,

o (étaleness) the weight map € — 2 is étale,

e (density of Shalika points) € contains a Zariski-dense set €y of classical cuspidal
points y corresponding to non-Q-critical Q-refined RACARs 7, satisfying (C1-2) of Con-
ditions 2.8,

+ (Shalika new vectors in families) for each y € 6. and for all v € S, m,, admits a

Shalika new vector of conductor c(my ) = c(m,), and

o (family of eigenclasses) for each ¢ € {£1}*, there exists a Hecke eigenclass @S, €
HL(Sk(7), Za) such that for every y € Gue with w(y) = Xy, the specialisation spa, (9%)

generates H.(Sk(z), D, )G s -

The non-vanishing, H-regular and strongly non-@Q-critical hypotheses hold if 7@ has non-Q-
critical slope and A is regular (Theorem 3.16, Lemma 7.4), so this implies Theorem B’ of the
introduction. The proof of Theorem 8.11 will occupy the rest of §8.3; it is similar to the methods

of §7, with the addition of some standard arguments, which we highlight.

8.3.8. Cyclicity results. We now prove an analogue of Proposition 7.19 and delocalise to a
neighbourhood.  Let Tq% = (Tgeh)mf denote the localisation of T, at mg . Recall A =
Oq.m,, -

The following is the only place in the proof where we use the existence of Shalika new vectors
at v € S (via Proposition 7.18).

Proposition 8.12. (i) There exists a proper ideal Iz C A such that
TG = A/
(i) The space HL(Sk (7), @Q);f is free of rank one over TS

Proof. Using Proposition 8.9, and arguing exactly as in Proposition 7.19, there exists Iz such
that
HE(SK(ﬁ)v-@Q)E NA/IfH

S:
mz

and hence (i) follows. The actions of A and TS; are compatible, so H (Sk(z), Za) s is free of

S,€e P .
rank one over T, giving (ii). O
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€

Since HY(Sk (7 Za)ms # 0, there exists a point ¢ € 55:h attached to 7.

To construct the eigenclasses ®¢, of Theorem 8.11, we want to delocalise Proposition 8.12 to a
neighbourhood of 7 in &3, . For this, it is convenient to work with rigid analytic localisations
instead of the algebraic localisations we have considered thus far. Define

T‘[S):eajﬁ = hg OC, and AXT; = lim 09,7

S eC cESy; Areice

where the limits are over open affinoid neighbourhoods. These are the local rings of the rigid
spaces &gy and Q at 23 and A, respectively. By [27, §7.3.2], the rigid localisation Tg’;_r (resp.
Ay,) is a faithfully flat algebra over the algebraic localisation Tg% (resp. A), and the natural

map induces an isomorphism ’i‘g; = ’/I\‘g;r (resp. A= /A\)\ﬂ) of their completions.
Proposition 8.13. (i) There is an ideal I, C Ay, such that

S,6 ~
TQ,(L‘;, = A>\7r/13:7'r

(ii) Let
€° = Sp(Tg’;g) C éag‘;,fb
be the connected component containing 3. After possibly shrinking Q0 C WAQﬁ, there exists

an ideal Ige C Oq such that
Tg’)ig &= OQ/ICge .
S,€

Proof. By exactness of completion, and Proposition 8.12(i), the map A~ 'TQ = of completed

(algebraic) local rings is surjective. As the completions are isomorphic we deduce

so the weight map w : ¢ — Q is injective at 3’ in the sense of [27, §7.3.3, Prop. 4], and that
proposition implies the natural map Ay — Tg’fwﬁ is surjective. We take I, to be the kernel of
this map, proving (i). Part (ii) follows from (i) and the definition of rigid localisation, as in [11,
Lem. 2.10]. O

To delocalise Proposition 8.12(ii), note there is a coherent sheaf .Z on 55;, with
M (C) = HL(Sk(7), Do) S @ps. Oc,
given by the Hecke action on overconvergent cohomology. Its rigid localisation is

. <h,e
My, = h_I)n HZ(SK(;r),Qgﬁ ®T§:Z Oc¢

S,e S,e
fips GCCSQJL

= HY(Sk (), Za)S" Bpse T,

Proposition 8.14. Let ¢ be the connected component from Proposition 8.13. Perhaps after
further shrinking ), we have HE(SK(;T), D) e ®T€1; Tg’f(g is free of rank 1 over Tg}
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Proof. We have

My = H(Sk(r), D) S @ps.c TGS,

Q,h
= [Hi(Sk(r), Z0) " @ps.c TQG] @pse TG,
= H(Sk(7): Za)s ®pse TG -

By Proposition 8.12(ii), this is free of rank 1 over Tg’;ﬁ. We conclude again from [11, Lem. 2.10].
O

8.3.4. Etaleness of families. We now use Hypothesis 8.6.

Proposition 8.15. (i) Let
¢ =Sp(Tq') C &),

be as in Proposition 8.14. If Evg0 (®S) # 0 for some B, then w : €€ — Q is étale.

(i) If = admits a non-zero Deligne-critical L-value at p with sign €, then w : €€ — Q is étale.

Proof. Let ®, be a generator of HE(SK(;T), D) Shoe ®sz22 T‘;f%) over Tg’ﬁg, normalised so that
spy, (%) = ®5. Combining Propositions 8.13 and 8.14, we have Annp,, (®%) = I4-. Exactly as

in Proposition 7.10, the non-vanishing hypothesis gives
0= AHHOQ (‘I)%) = I<g57

giving (i). For (ii), we argue exactly as in Corollary 7.12; the sign condition (Definition 7.3) is
now necessary due to the support of 5;;”0 (see Theorem 5.22). In (ii) we have used Hypothesis 8.6
for . O

This proof is valid for any € arising as the sign of a non-zero L-value, so if 7 admits any non-
zero Deligne-critical L-value at p, then Proposition 8.15 holds for some €. In Proposition 8.17,
we will use Proposition 8.15 for one € to deduce it for all e.

Proposition 8.16. Suppose 7 is strongly non-Q-critical, Ax is H-regular and EVZO((I);“) #0
for some €y, 8. Then € contains a Zariski-dense set €0 of classical cuspidal non-Q-critical

points.

Proof. The conditions ensure € — Q is étale, so dim(€“) = dim(€2). We conclude exactly as
in Proposition 7.14 using [19, Prop. 5.15]. O

Proposition 8.17. Suppose 7 is strongly non-Q-critical, A is H-regular and that EvgO (@) #0
for some €y and some 3. Then €° is independent of € € {£1}=, in the sense that for any such

€, there is a canonical isomorphism € == €€ over ).

Proof. By Propositions 8.15 and 8.16, € is étale over Q2 and €0 C €° is Zariski-dense. Now
let € be arbitrary. At any y®© € €29 of weight A\, corresponding to 7, by Proposition 2.3 and

non-Q@Q-criticality we have
0 # He(Sk(a) P, s = He(Sk(7): Do, s -

By Remark 7.9, since y© is cuspidal there exists y© € éﬁ; corresponding to 7,. As in Corol-
lary 7.22, the map

€

s,€
Cre = éDQJLv YOy
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interpolates to a closed immersion
€ . ) S,€
L0 = &g,

sending x2"° to x3’°. Thus (5(€®) C €<, so € contains an irreducible component of dimension
dim(Q2). As Oge = Oq/I¢e, we deduce Ige = 0, so €€ — Q is étale at 7, and conclude that (€
is an isomorphism as in Corollary 7.22. O

Hence &3 ), and all the &S » are locally isomorphic at 7, so we drop e from notation. We
deduce existence and étaleness of the component ¢ C &3 ), in Theorem 8.11; we take it to be any
of the €. The isomorphisms between the ¢ identify all the 7 with a single point z$ € S n-

Remark 8.18. Having a family of cuspidal automorphic representations is essential here; e.g.

for GLsg, an Eisenstein series will appear in only one of the +-eigencurves (see [20, §3.2.6]).

8.3.5. FEigenclasses for Shalika families. We now refine Proposition 8.16. Suppose 7 satisfying
(C1-2) of Conditions 2.8 is strongly non-Q-critical. For v € S, assume 7, admits a Shalika new
vector of conductor ¢(m,) and Hypothesis 8.6 holds for ¢ = ¢(m,). Suppose A, is H-regular and
7w admits a non-zero Deligne-critical L-value at p. Then by §8.3.4, we know:

(1) that there is a unique irreducible component % of &3, through @3

(2) that ¢ = Sp(TQ ) = Sp(Ty ') for all € and

(3) that w: € —  is étale.

As in Proposition 7.14, we deduce that € contains a Zariski-dense set %}, of classical cuspidal

non-Q@-critical points. If y € &, it corresponds to a Q-refined RACAR 7, since by construction
y appears in cohomology at (parahoric-at-p) level K (7).

Proposition 8.19. For each ¢ € {£1}*, up to shrinking €2, there ewists a Hecke eigenclass
@, € HL(Sk(7), Za) such that for each y € Cye:

(i) HL(Sk(7), Dr,)os is a line generated by spy (®%), where Xy == w(y),

Yy Y

(i1) the Q-refined RACAR 7, satisfies (C1),

(iit) for allv € S, my . admits a Shalika new vector of conductor ¢(my,) = c(m,), and

(tv) 7, satisfies (C2).
Proof. (i) By Propositions 8.15 and 8.17, H.(Sk (7), Za)S"* ®TSIZ T C Hi(Sk(a), Za)° is
free of rank one over Og; let ¢, be any generator. The Hecke operators act by scalars on this

Ogq-line, so ®¢, is a Hecke eigenclass. By Proposition 8.15 the structure map Oq — Tg’ig is an

isomorphism, mapping my, bijectively to mj. Thus specialisation at Ay, induced from reduction

modulo my, as an Og-module, is equivalent to reduction modulo my as a Tf’z’ig—module; whence

5D, + H(Sk(m) Z0) 5" @ps.c T — Hi(Sk(), Z0) " @pse T /my
= Hi(Sk(r), Za)ms Brse (TS5, /my)
= HY(Sk(m), Pa)ns @a, (Ay/ma,) = HL(Sk(r), Pr, sy (85)

where A, = OQ,mM. Here the first isomorphism follows since reduction at my factors through
localisation at my, the second as the weight map is an isomorphism at y, and the third by
Remark 7.9. Hence H.(Sk (7). @)‘y);f is a line over L, generated by spy (®%), which proves (i).

(ii) To prove each y € &, satisfies (C1), we argue exactly as in Proposition 7.16; here we

already have étaleness, so this case is easier, and we are terse with details. Fix (y,j) with
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L@ (1 ®x,j+ %) # 0 (by hypothesis), where y has conductor p®, with 8, > 1 for all p|p. Let
€ = (XXZyeN) oo, and define a map

Evg,j : HE(SK(ﬁ-), .@Q) — Oq

such that (up to shrinking ) Evg, ;(®%) is everywhere non-vanishing on €. Recall &7 from
(5.4). Then for all y € %, we have

BV (@5)(A,) = /G e BV s, (9) (8.6)

=& (12, 05y, (@) ) £0.
As (8.6) is non-zero, each m, satisfies (C1) by Proposition 5.15(cf. Proposition 7.16), showing
(ii).

We need the following in proving both (iii) and (iv). Combining (i) with non-Q-criticality
shows
dimp, He (S (z), o, (L))ms = 1.
Base-changing, the same is true with Qp-coefﬁcients. By Proposition 2.3, we see:
(1) the generalised H°-eigenspace in 775 J(fr) at my is a line over C.
(iif) We now study 7, at v € S. Letting 1, = no| - [*¥, by () we have
dimc (Wy,v)ng(c) [S% - nyw(av) 1oy € Of;] =1
Lemma 8.4 implies that m, , admits a Shalika new vector of conductor ¢ = ¢(m,), giving (iii).

(iv) As in (iii), mp , is parahoric-spherical as () implies

dimg (U5 = a5 ] = dime S} () (U5 — a5, =1, (8.7)
where aj , is the Ug-eigenvalue of 7. It remains to show the non-vanishing in (C2).

Let W, , be a generator of (8.7) for p|p. Using (C1) at v ¢ S U {p|p}, and Hypothesis 8.6
and the equality ¢(my,,) = ¢(m,) for v € S, we may take Friedberg-Jacquet test vectors W, ) for
v { p such that

vt (K@
WyF} = ®UTPWyF-,i Dplp Woy € SZ; ! (Wyj(f ))
is fixed by K (7). For € as in (8.6), let
€ K(7),e ~ €
o5 = Op V(W) € HiSkm) T (Qy)as-
This line contains ry, ospy (@), so there is ¢ € Q; such that ¢ @) =7y, ospy, (®%,). Then
CZEI : 8)];”0 (d)Z) = gi’no (7‘)\?/ o Sp)xy ((I)%)> 7£ Oa

where non-vanishing is (8.6). As in Theorem 5.22 (via Lemma 5.16 and Proposition 5.20), the
left-hand side is

CZ'Ypm/\y(tg)NF/Q(D)jnT(Xf)n
~ . . . -4
X Hp\p ep(ﬂ'vaa])eoo(ﬂ'y)Xa])L(p)(Wy ® X5J + é):l . Hp|p Wy,p(tp p) 7é 0

As the L-function is analytic, the bracketed term is finite scalar; we deduce that each W, , (¢, o ) #

0. We can renormalise W, , (and hence c)) so that W, , (t;‘s") =1, so (C2) holds. O

With this, we have completed the proof of Theorem 8.11.

86



p-adic L-functions in Shalika families Barrera Salazar, Dimitrov and Williams

8.4. Families of p-adic L-functions. Let 7 satisfy (C1-2) of Conditions 2.8. We also assume
that all the hypotheses of Theorem 8.11 are satisfied.

Let € C &3, be the unique (Shalika) family through z3, and €, the Zariski-dense subset of
classical points, both from Theorem 8.11. For each € € {il}2 let @, € H.(Sk(7), Za)" be the
resulting Hecke eigenclass. We may renormalise ®¢, so that spy(®%,) = ®%. The following is an
analogue of Definition 6.22 for families.

Definition 8.20. Let £7€:= p0(®%,). Also let

Dy = 0 € H(Sk(n), Za),

which is also a Hecke eigenclass. Define the p-adic L-function over € to be
LE=pm(Dg) = > LI € D(Galy,Oq).
ee{£1}>
Via the Amice transform, as in Definition 6.22, after identifying ¢ with Q via w we may consider
E;f as a rigid function ¢ x 2'(Gal,) — Q,,.

The following implies Theorem C of the introduction. The hard/novel part of the proof has
already been handled; given Theorem 8.11, the remainder is standard.

Theorem 8.21. Suppose T satisfies the hypotheses of Theorem 8.11. Let y € €y be a classical
cuspidal point attached to a non-Q-critical Q-refined RACAR 7, satisfying (C1-2). For each e,

there exists a p-adic period c; € L* such that
LIy, =) = ¢ - L (Fy, —) (8.8)

as functions Z (Gal,) — Qp, In particular, C;g satisfies the following interpolation: for any
j € Crit(w(y)), and for any Hecke character x of conductor p? with 8, > 1 for all p|p, we have

_ ¢ (p) Ty
iy N(LE (. xXhye)) = & AT(x ) "NE/q@)™ [ [ e (Fy X0 ) eoo (7 X J)%,

plp

where € = (Xxgycn)oo and other notation is as in Theorem 6.23. Finally cig =1 for all e.

Remark 8.22. The complex periods Q;y are only well-defined up to multiplication by E*,

where E' is the number field from Definition 2.9; the numbers cj, are p-adic analogues.

Proof. Let y be as in the theorem and put A\, = w(y). As in §2.8 (using Hypothesis 8.6), fix a
Friedberg—Jacquet test vector
7 € SZi,f(ﬂy-,f)K(ﬁ)v

and for each € a complex period Q7 ~as in §2.10. Since y € € is defined over L, as in §2.10 there
exists a class

by = @KE W) [ip( Q7)€ H(t;(SK(%)77/)\\2(L))1€115'
Via non-Q-criticality, we lift ¢, to a non-zero class ®f € HE(Sk(#) Zn, (L))fn? By Theorem 8.11,
this space is equal to L - sp, (@), so there exists cj, € L* such that

SPa, (@%) = C ‘I’E

By definition, £ (7,) = u (®j). As evaluation maps commute with weight specialisation (Propo-
sition 6.15), we find
E.e\ _ € € [~
Sp)\y ([’p ) =Gy ‘Cp(ﬂ-y)a

which is a reformulation of (8.8). The interpolation formula then follows from Remark 6.24.

Finally, our normalisation of ®¢, ensures c¢ s = 1. O
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8.5. Unicity of non-Q-critical p-adic L-functions. In Proposition 6.25, we proved a unic-
ity result for £,(7) when 7 has sufficiently small slope. Whilst non-Q-critical slope implies
non-Q@Q-critical, the converse is false; even when G = GLs, there exist critical slope refinements
that are non-critical (e.g. [69, 20]). We now use L'f to prove an analogue of Proposition 6.25 for
the wider class of (non-Q-critical) 7 satisfying the hypotheses of Theorem 8.11.

Let ap = [[,,(ap)® and hy, = vy(ay). For e € {£1}*, let 2°(Gal,)¢ be the component of
characters x with € = (x17)oo. Then

2 (Galy) =| | 2 (Gal,)*

(e.g. [23, Rem. 7.3.4]). If L : € x Z'(Gal,) — L is a rigid analytic function, then £ = )" _L¢,
with £¢ supported on € x 2 (Galy)®.

Proposition 8.23. Suppose 7 satisfies the hypotheses of Theorem 8.11. Suppose Leopoldt’s
conjecture holds for I at p and that L;,(7) # 0. Let

LE:% x X (Gal,) — L

be any rigid analytic function such that for all y € €y, the specialisation L(y, —) is admissible
of growth hy, and there exists Cy € L such that

y— j € n in ~ . \ L® Ty .
iy (L5 (0 xxye)) = CyAT(x) "Ny (@ [ [ en (oo ) - ooy X, ) TGP (8.9)
plp
for all finite order x € 2 (Galy) and j € Crit(\,) such that (xXyc1)eo = €. Then there exists
C € L such that
L(xg,—) = C- Ly(7) € D(Galy, L).

7

Proof. Let
B — Le/ﬁfve € Frac(O(‘f X %(Galp)e)).

We claim Ef’e is not a zero-divisor, so this is well-defined. Note & contains a Zariski-dense set of
classical points y of regular weight; at every such point, let j, = max(Crit(\,)). Fix such a y. For
any everywhere ramified finite order Hecke character x € 2 (Gal,) with x(z)z» € 27(Gal,),

we have

€ B € n in ~ . N LP Ty \J
L5 x(2)27) = ¢ AT(x)"Nr/(0)™ | [ ep (R x e (my. x. ) -T2 0. (8.10)
plp

Every connected component of 2 (Gal,)¢ contains such a character y(z)z7v, and on every such
component the only zero-divisor is 0; we conclude that ﬁf’e(y, —) is not a zero-divisor. Now
suppose MLZ< = 0 for some M € O(% x 2 (Galp)). Then M(y,—) = 0 for all y as above.
Since this is true for a Zariski-dense set, we have M = 0, and L’;’g’e is not a zero-divisor.

For a Zariski-dense subset of classical y € €, we have h, < #Crit(),). Fix such a y. Since the
slope at p is constant in p-adic families, y has slope h;, and hence both £(y, —) and E;,g*ﬁ(y, —)
are admissible of growth h,. Thus by (8.9) and Proposition 6.25 we know

B(y,—) = Cy/c;, € L™

is constant (as a function on 2 (Gal,)¢). By Zariski-density of such points y, we deduce that
B<(y,—) € P(L) is constant for each y € €. Moreover B¢(y, —) does not have a pole at y =
since
€ e _ pe(~
‘Cp (x;”iv 7) - ‘Cp(,]r) 7& 0
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by assumption, so B¢(z5,—) = C for some C € L. In particular
LE(2g,—) = CLY (25, —) = CLL(F). O
The following is a reformulation of Proposition 8.23:

Corollary 8.24. Suppose 7 satisfies the hypotheses of Theorem 8.11. Assume Leopoldt’s conjec-
ture for F at p. Up to scaling the p-adic periods, L,(7) is uniquely determined by interpolation
of L-values over the unique Shalika family € of level K(7) through 7.

In particular, up to these assumptions £,(7) does not depend on our method of construction.

Remarks 8.25. We expect that L;,(7) should always be non-zero. By (8.9) and Lemma 7.4, if
Ar is regular this is automatic for any e such that there exists a finite order Hecke character y
such that (xZ,.X7)o = €, where j is any integer strictly above the centre of Crit(As).

Without Leopoldt, there is still an analogue for the restriction to 1-dimensional slices of Gal,
(cf. [11, Thm. 4.7(ii)] or §6.6). Thus the restriction of £,(7) to the cyclotomic line is unique.

A. Errata for earlier works
Whilst writing this paper, we found errors in our earlier publications. We clarify them here.

(1) In [19, Rem. 4.19], which compared the right actions used in that paper with the left actions
used in this, in the final sentence U should have been A(o(t)~'t)U,, (not XY (o (t)~'t)U,).
This was not used elsewhere bid.; we have used the correct formulation here.

(2) The power of ¢ in the statement of [38, Prop. 3.4] is incorrect. In the proof, one can reduce
the support of the integral in the penultimate displayed equation to the Iwahori subgroup,
not to N, (P?)T,,(O)N,(P?) as stated, so the final volume term is wrong. The proof
otherwise holds. A corrected statement is Proposition 5.20 of the present paper. (This
ensures the final interpolation result is consistent with the Coates—Perrin-Riou conjecture
on existence of p-adic L-functions; see [7, §3]. Indeed, [38, Thm. B] is not consistent with
Coates—Perrin-Riou). The powers of ¢ in Theorem B and Theorem 4.7 of [38] are thus
incorrect. The interpolation formulas there should be replaced by that of Theorem A here.

Glossary of key notation/terminology

A=A% ... Locally analytic function space (§3.2) Evg0 ................. Galois evaluation (eqn. (6.15))
Qp,Qp  ceverniii e Up, Up eigenvalues (§2.7) 55;’"0 ... Classical evaluation map at x, j (eqn. (5.4))
Qs O e Ug, U, eigenvalues (§3.3) EQh s Q-parabolic eigenvariety for G (Def. 7.1)
B=(Bplplp € ZPIP Multi-index (§4.1) é’g’; ...... ‘modified’ Q-par. eigenvariety (Def. 8.10)
(C1,(C2) v Assumptions on 7 (Cond. 2.8) ep(TyXoJ) vvvnennnnn C-PR factor at p (Thm. 6.23)
C e Connected component of S, (§7:3) e (F1X07) v vvvereeereeneneeeeenn.. Def. 5.19
<ﬁ;(f) ~~~~~~~~~~ Narrow ray class gp. cond. I (§2.1) S ) C-PR factor at co (Def. 5.18
Crit(\) ... Deligne-critical L-values for A (eqn. (2.2)) € e Character Koo /K2, — {£1}* (§2.3.4)
Do, Locally analytic distributions (§6.1.1) Foooo Totally real field of degree d
Dy = D}C\g ------- Q-parahoric dists. of wt. A (§3.2.2) A Classical class in H! (Def. 2.10)
Dq = Dg -------- Q-parahoric dists. over Q2 (§3.2.3) O, Dz ...l Overconvergent classes in HY (§6.6)
Do Local system of distributions (§2.3.2) G Reso . /z GLan
Dp o Monoid in G(Qp) gen. by Jp, tp (§3.3) G oo Reso,./z GLn
O Representative of mo(Xg) (§4.1) Galp ..o Gal(FP>/F) (§2.1)
Evg/[(s ........... Abstract evaluation map (Def. 4.5)
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Galp . ... Gal(QP>°/Q) (§2.1) P o Ng/q(p)
T'g,s Arithmetic group in automorphic cycle (§4.2.2) RACAR ...... regular algebraic cuspidal auto. repn.
H oo Resp,,/z[GLn X GLy] RASCAR ............ n-symplectic RACAR (Intro.)
HH ... Universal Hecke algebras (§2.4, Def. 2.9) TA eeennn Specialisation map D) — VA\/ (eqn. (3.10))
HS . Universal Hecke algebra at all primes (Def. 8.7) Shalika model .............. ... ... ...l §2.6
Sh oo Slope Uy < h part (§3.3) Strongly non-Q-critical .................... Def. 3.14
I Irreducible component of &g Sk ..Loc. symm. space for G of level K (eqn. (2.3))
Tp oo Fixed isomorphism C =~ ap S {v { poo : ™, not spherical} (§2.4)
boviiiii Map H < G, (h1, h2) — diag(h1, ha) S:Z) ............................ Shalika model (§2.6)
LB v Map in automorphic cycle (eqn. (4.3)) Spy --..Any map induced from (modmy): Oq — L
7 I Shalika character (§2.6) D R Set of real embeddings of F'
A Parahoric subgroup of type Q (§2.7) O e Real embedding F — Q
Jg ...................................... Eqn. (6.8) oP) oo Real embedding attached to plp (§2.1)
K ........ Open cpct. subgp. of G(Ay) (eqn. (2.20)) Taon - oovoeeeenannns Hecke algebra using H (Def. 7.1)
K(7)....Friedberg-Jacquet level (eqn. (2.23),§8.3.1) ng,h ........... Hecke algebra using HS (Def. 8.10)
Ki(7) oot Whittaker new level (eqn. (7.2)) t =d(n?+n—1) .. Top degree of cusp. cohomology
KAj weeeeeeaen Map VyY — Vé{_w_j) (85.2) By oot diag(wpIn, In) € GLay (Fy)
KSj oo Normalised map V(L) — L (Def. 5.10) tg ................................. 1_‘[155P (Def. 4.2)
L .......... Extension of Qp, coefficient field (§2.10) TOXF) ooeeeeiaann, Gauss sum of xy (Thm. 5.22)
Lg oot Open compact in H(Aj) (Def. 4.2) T e Twisting map (§4.2.1)
L(7y8) e Standard L-fn. of 7 @K,g@f@ ........... Maps Szf (w)‘f() — HE (§2.10)
LW®(m,s) ..., L() with no Euler factors at p Uy = Uﬁp ........... Automorphié Uy-operator (§2.7)
Lp(R) oo p-adic L-function of 7 (§6.6) Ug oot Integrally normalised U, (§2.7,§3.3)
l:;g .. p-adic L-function in family over ¢ (Def. 8.20) 720 5 Integral ideles = 1 (mod I) (§2.1)
L Localisation of Og at Ar (§8.3.3) VA oo Alg. repn. of G of weight A\ (§2.2)
Ar  (Pure, dominant, integral) weight of 7 (Def. 3.4) VAH .................... Alg. repn. of H of weight A
M e Max. ideal in M (Def. 29) VI ... (§3.2.3)
mE o Max. ideal in H* (Def. 8.8) Voo Archimedean local system on Sk (§2.3.1)
LA e Max. ideal in Ogq ¥ ....Non-archimedean local system on Sk (§2.3.2)
Non-Q-critical ... Def. 3.14 v/{f’ vH L Elements of V)\H and VI (Not. 5.9,6.3)
Non-Q-critical slope ...................... Def. 3.15 B0 e Pure weight space (§3.1)
Ng i Unipotent radical of Q W/\Q ............. (Parabolic) Weight space (Def. 3.4)
S N B Element of V(L) (§5.2) WI‘ZrJ .......... Friedberg—Jacquet test vector (§2.6)
Qo Affinoid in W;’i W (OF WA, WQ) v, Purity weight (§2.2)
Qe Complex period (§2.10) Wn v Longest Weyl element for GL,, (Def. 4.2)
O v Ring of rigid functions on XB et Automorphic cycle of level 3 (§4.1)
OFp oo OF ® Zyp X e Finite order Hecke character
PP [IpPr (Det. 4.2) Ep i Twisting operator (Def. 4.2)
Prg «ovviviniinninnnnn Map mo(Xg) — %g;(pﬁ) (5.3) P Point of &q p, corr. to @ (Thm. 7.6)
T Auto. repn. of G(A) (Conditions 2.8) xS Point of ‘gg,h corr. to # (Thm. 8.11)
T p-refinement of 7 (§2.7, Conditions 2.8) XCYC v v Cyclotomic character of Galy
mo(Xpg) ... Component group of auto. cycle (before 2 e Centre of G
(5.3)) X e Element of ‘Ké; (»?)
TOY eervnn i Uniformiser of Fy *-action of Ap ... §3.3
Yo Additive character of F\Ar (§2.6) I S P actions of H(Zp) ((3.1),(3.5))
Q Parabolic subgroup with Levi H g Localisation at mz (Def. 2.9)
Q-refined RACAR .. Choice of Q-ref’t 7y Vplp (§2.7) S e Localisation at mg (Def. 8.8)
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