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Abstract

In this paper, we propose and explore a new connection in the study of p-adic L-functions
and eigenvarieties. We use it to prove results on the geometry of the cuspidal eigenvariety
for GL2n over a totally real number field F at classical points admitting Shalika models.
We also construct p-adic L-functions over the eigenvariety around these points. Our proofs
proceed in the opposite direction to established methods: rather than using the geometry
of eigenvarieties to deduce results about p-adic L-functions, we instead show that non-
vanishing of a (standard) p-adic L-function implies smoothness of the eigenvariety at such
points. Key to our methods are a family of distribution-valued functionals on (parahoric)
overconvergent cohomology groups, which we construct via p-adic interpolation of classical
representation-theoretic branching laws for GLn × GLn ⊂ GL2n.

More precisely, we use our functionals to attach a p-adic L-function to a non-critical
refinement π̃ of a regular algebraic cuspidal automorphic representation π of GL2n/F which
is spherical at p and admits a Shalika model. Our new parahoric distribution coefficients
allow us to obtain optimal non-critical slope and growth bounds for this construction. When
π has regular weight and the corresponding p-adic Galois representation is irreducible, we
exploit non-vanishing of our functionals to show that the parabolic eigenvariety for GL2n/F

is étale at π̃ over an ([F : Q] + 1)-dimensional weight space and contains a dense set of
classical points admitting Shalika models. Under a hypothesis on the local Shalika models
at bad places which is empty for π of level 1, we construct a p-adic L-function for the family.
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1. Introduction

The arithmetic of L-functions has long been a topic of intense interest in number theory. Via the
Bloch–Kato Conjecture, the special values of L-functions are expected to carry deep algebraic
data. Most recent progress towards this conjecture has come through p-adic methods – more
precisely, through understanding all of (a) p-adic L-functions, (b) classical p-adic families, and
(c) p-adic L-functions over classical p-adic families. Where one has all three, they have been
crucial in proofs of Iwasawa Main Conjectures and cases of the Bloch–Kato Conjecture. It is
therefore natural to ask whether one can obtain (a), (b) and (c) for any regular algebraic cuspidal
automorphic representation (RACAR) of a reductive group G.
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For (a), at least, this is expected to be possible in great generality, thanks to conjectures of
Coates–Perrin-Riou and Panchishkin [36, 35, 66]. However, our understanding of fundamental
cases – for example, GLN for N > 2 – remains poor, with relatively few constructions of p-adic
L-functions in this case, most of which assume a p-ordinarity condition.

The theory of p-adic families is more subtle still. Singularly, (b) can fail when moving beyond
GL2; there exist RACARs of GLN that are ‘arithmetically rigid’, not varying in any classical
p-adic family (that is, a positive-dimensional subspace of an eigenvariety containing a Zariski-
dense set of classical points; see e.g. [8]). This contrasts sharply with the cases of, for example,
Hilbert or Siegel modular forms, where it is expected all RACARs can be classically varied.

To approach (c), one needs not only the existence of a classical family, but also a precise
description of its geometry. For example, one needs to know whether such a family is smooth
or étale over the weight space. Well-established methods for studying eigenvarieties break down
for GLN with N > 2, owing to RACARs contributing to multiple degrees of cohomology and
the underlying locally symmetric spaces not admitting any algebraic structure. The geometry of
the GLN eigenvariety is thus largely mysterious, meaning there are few instances in this setting
where (c) is approachable at present.

In this paper, we prove new cases of (a), (b) and (c) for regular algebraic symplectic-type
cuspidal automorphic representations (RASCARs) π of GLN over a totally real number field F ,
described below in Theorems A, B and C respectively.

The technical heart of our approach is a construction of ‘evaluation maps’, a p-adic integration
theory on overconvergent modular symbols for GLN . The special values of these maps compute
explicit multiples of classical complex L-values of RASCARs. Such maps are very familiar in
the setting of GL2, where they have been used in many papers to study p-adic L-functions (see
§1.2.1), but they had not previously been constructed for any higher-dimensional GLN . The GL2
constructions do not easily generalise; the relative simplicity of the GL2 setting hides substantial
representation-theoretic obstructions that arise in higher dimension (see §1.2.2). A key new
input in our constructions is a p-adic interpolation, in both cyclotomic and weight directions, of
higher-dimensional branching laws in representation theory. This occupies §5 and §6.

Once constructed, evaluation maps have powerful consequences. Their utility in constructing
p-adic L-functions is already well-documented in the GL2 case, and similarly we use them to
construct p-adic L-functions for RASCARs of GLN . However, we also push their use further
than previous works. One particularly striking consequence is the following strong version of (b)
in this setting, made precise in Theorem B (and Theorem 7.6):

(†)
Let π be a RASCAR with regular weight and irreducible Galois representation. Then
the parabolic GLN -eigenvariety is étale over the pure weight space at certain non-
critical p-refinements π̃ of π. Hence π̃ varies in a unique classical p-adic family.

Our proof of this result turns traditional methods upside down. There is a long and storied
history of applying the geometry of eigenvarieties to construct and study p-adic L-functions; for
example, this is the central tenet of Belläıche’s celebrated paper on critical p-adic L-functions
[20]. There are also some works connecting the étaleness of an eigenvariety to the non-vanishing
of an adjoint p-adic L-function (e.g. [21, §VIII], [10], [57]), but similarly all of these works require
prior knowledge about existence and properties of p-adic families to study the p-adic L-function.

Our methods add to this rich story. However, they differ considerably in that unlike all
previous works, we proceed in the opposite direction. We first construct p-adic L-functions and
then we use them to construct p-adic families. Indeed, we use our evaluation maps to show that
non-vanishing of the p-adic L-function of π̃ – guaranteed by regular weight – implies faithfulness
of a Hecke algebra as a module over weight space, thus producing dimension in the eigenvariety
and implying the existence of classical families. In addition, rather than using the adjoint p-adic
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L-function, to our knowledge we give the first instance where non-vanishing of a standard p-adic
L-function is used to control the geometry of an eigenvariety.

The methods we develop in this paper have more general applications. In particular, the
proof of (†) – which occupies all of §7 – shows that evaluation maps, through interpolation
of branching laws, can be a powerful tool in understanding the geometry of classical p-adic
families. We have explored this further in sequel papers [13, 14]. More generally, our methods
suggest the natural setting to consider evaluation maps is that of spherical varieties, giving
strong connections between the geometry of eigenvarieties and automorphic period integrals in
the Gan–Gross–Prasad conjectures (see e.g. [87, 67, 88]), as well as to p-adic interpolation in
Sakellaridis–Venkatesh’s relative Langlands program [72]. We will use the methods of this paper
to construct and study p-adic interpolations of such period integrals in future work.

We expect there to be further arithmetic applications of our evaluation maps. In the GL2
setting, beyond their applications to p-adic L-functions, analogues of these maps have further
been used to study periods and congruences between base-change and non-base-change Bianchi
modular forms [49, 79], study L-invariants and trivial zero conjectures [15, 11], construct Stark–
Heegner cycles predicted by the Bloch–Kato conjecture [84, 83], and prove generalisations of Hida
duality [24]. Few of these results/constructions have been carried out for higher-dimensional
GLN , by any method. We anticipate similar applications of evaluation maps are possible for
RASCARs, and again hope to return to this in subsequent work.

Finally, we mention applications of our results themselves, which – as explained above –
should ultimately have applications towards the Bloch–Kato and Iwasawa Main Conjectures.
They have already led to research in this direction for GL2n [70, 58]. There are more immediate
applications to other groups such as GSp4. In a sequel [13] to this paper, we have crucially used
the methods developed here to prove a result on the variation of p-adic L-functions required in
[60]. This result – which was announced as Theorem 17.6.2 ibid., where it was deferred to future
work of the present authors – was used by Loeffler and Zerbes to prove cases of the Bloch–Kato
Conjecture for GSp4 [60] and for symmetric cubes of modular forms [61].

1.1. Set-up and previous work. Fix forever an isomorphism ip : C ∼−→ Qp.
We say a regular algebraic cuspidal automorphic representation (RACAR) π of GLN (AF ) is

essentially self-dual if π∨ ∼= π ⊗ η−1 for a Hecke character η, which we henceforth fix. Such a π
is either η-orthogonal or η-symplectic, depending respectively on whether the twisted symmetric
square L-function L(Sym2π× η−1, s) or the twisted exterior square L-function L(

∧2
π× η−1, s)

has a pole at s = 1 (see [62, 75], summarised in detail in [50, Lem. 2.1]). Assuming the p-adic
Galois representation ρπ attached to an essentially self-dual RACAR π is (absolutely) irreducible,
the unique (up to scalar) non-degenerate η-equivariant bilinear form on ρπ is either symmetric
or skew-symmetric, and it is conjectured that π should be η-orthogonal in the former case and
η-symplectic in latter. Our focus is on the η-symplectic case. By [4], π is η-symplectic if and
only if N = 2n is even and either (so both) of the following hold:

(i) π admits an (η, ψ)-Shalika model (see §2.6);
(ii) π is the transfer of a globally generic cuspidal automorphic representation Π of GSpin2n+1(AF )

with central character η.

Henceforth we will mainly use (i) and call such a representation π a RASCAR.
Let G = ResOF /Z GL2n. Let Σ be the set of real embeddings of F , and let λ = (λσ)σ∈Σ be a

Borel-dominant weight for G, i.e. λσ = (λσ,1, . . . , λσ,2n) ∈ Z2n with λσ,1 ⩾ · · · ⩾ λσ,2n. Let π be
a RASCAR of G(A) of weight λ; our convention is that π is cohomological with respect to the
coefficient system V ∨

λ , where Vλ is the algebraic representation of highest weight λ. Let

Crit(λ) ..= {j ∈ Z : −λσ,n ⩽ j ⩽ −λσ,n+1 ∀σ ∈ Σ}. (1.1)
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Then j ∈ Crit(λ) if and only if L(π, j + 1
2 ) is a Deligne-critical value; and Grobner–Raghuram

showed in [45] that these L-values, and their twists by finite order Hecke characters, are algebraic
multiples of a finite set of complex periods.

Let p be a prime such that πp is spherical for each p|p (or more generally, each πp satisfies
(C2) of Conditions 2.8). A p-adic L-function for π is a p-adic distribution of controlled growth
that interpolates the algebraic parts of Deligne-critical L-values. For such p-adic interpolation it
is essential to take a p-refinement π̃ of π, i.e. to work at non-maximal level at p (e.g. for GL2, this
is the process of passing from a newform of level Γ1(M) to an eigenform of level Γ1(M)∩Γ0(p)).
A standard approach is to refine to Iwahori level at p|p, which in our case corresponds to choosing
a full triangulation of the 2n-dimensional local Galois representation. However, the Panchishkin
condition (see [59, §2.1], inspired by [66]) predicts that the p-adic L-function should not depend
on a full triangulation, but only on a suitable n-dimensional stable submodule. This suggests
that the natural level to take at p|p is not Iwahoric, but the parahoric subgroup Jp relative to
the parabolic subgroup Q of G with Levi

H = ResOF /Z(GLn×GLn).

In this paper, we indeed show that parahoric level is optimal for this construction (see §1.2.3).
Let Op be the ring of integers in the completion Fp of F at p, and fix a uniformiser ϖp in Op.

Of central importance is the Hecke operator Up =
[
Jp

(
ϖpIn

In

)
Jp

]
and its optimal integral

normalisation U◦
p (see §3.3). A Q-refinement of πp is a choice of (non-zero) eigenvalue αp of Up

acting on πJpp , and a Q-refinement of π is a choice π̃ = (π, (αp)p|p) of Q-refinement of πp for each
p|p. Following [38, Definition 3.5], we say the Q-refinement π̃ is Shalika if each αp is a simple
eigenvalue that interacts well with the Shalika model in a precise sense (see §2.7).

The following p-adic reformulation of [45] performed in [38] will be crucial for us. For an open
compact subgroup K =

∏
vKv ⊂ G(Af ) that is parahoric at p (that is, with Kp = Jp at each

p|p), let SK be the associated locally symmetric space for G (see (2.3)). Consider the compactly
supported cohomology groups Ht

c(SK ,V ∨
λ (Qp)) in degree t = d(n2 + n − 1), where V ∨

λ is the
(p-adic) algebraic local system attached to V ∨

λ . Then [38] proved that

(a) there exists a family of p-adic classical evaluation maps

Evχ,j : Ht
c(SK ,V ∨

λ (Qp))→ Qp,

indexed by finite order Hecke characters χ of p-power conductor and j ∈ Crit(λ), and
(b) for a sufficiently small but inexplicit level K = K(π̃) (see (2.23)), attached to π̃ and ip there

exists a classical eigenclass
ϕπ̃ ∈ Ht

c(SK(π̃),V
∨
λ (Qp))

whose image Evχ,j(ϕπ̃) equals ip
(
L(π ⊗ χ, j + 1

2 )/Ωϵπ
)

up to a non-zero factor, where Ωϵπ
is a complex period, depending only on π and the multi-sign ϵ = (−1)j · (χη)∞ ∈ {±1}Σ

(recalling π is η-symplectic).

In Theorem 5.22, based on [54], we improve this by making the factor completely explicit.
In [38], when further π̃ is Q-ordinary – that is, when the integral normalisation α◦

p of αp is
a p-adic unit – the authors constructed the corresponding p-adic L-function Lp(π̃) by proving
directly the so-called Manin relations.

1.2. Main results and methods. In this section, we state our three main results precisely
(in Theorems A, B and C). All three are proved using overconvergent cohomology.
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Figure 1: Strategy of our constructions

1.2.1. Overconvergent cohomology and families beyond GL2. The utility of overconvergent co-
homology in constructing p-adic L-functions and p-adic families is very familiar. For example,

(1) it was the central method used in the papers [43, 68, 69, 20, 12, 86, 16, 11, 23, 17, 18, 56],
including several by the present authors, to construct and study p-adic L-functions attached
to modular forms on GL2 (in various settings, ranging from ordinary modular forms over Q
to finite slope families over general number fields);

(2) for a general quasi-split group G, it was used in [9, 81, 46, 19] to construct eigenvarieties
(and hence p-adic families of overconvergent systems of eigenvalues).

Despite the huge generality for which overconvergent cohomology has been developed in (2),
none of the program in (1) has been generalised from GL2 to higher GLN . From the papers
above the strategy for carrying out such a generalisation is clear; it is summarised in Figure 1
below. The results of [45, 38] comprise the bottom row (B). However, fundamental obstacles and
new features arise when trying to implement this strategy to construct the middle and top row
beyond GL2. For example, we have already commented that the theory of p-adic families (and
hence row (T)) is not well-understood. Additionally, unlike for GL2 there is subtlety over the
level at p (Iwahoric vs. parahoric) at which one works; we describe this in detail in §1.2.3 below.

Before any of this, however, one must first construct (horizontal) evaluation maps in Figure 1.
In row (B), where there is no p-adic variation, the evaluation maps Evχ,j depend on a separate
choice of classical representation-theoretic branching law for each j ∈ Crit(λ). For GL2, the
classical coefficients V ∨

λ are just spaces of polynomial functions on OF ⊗Z Zp. This simplicity
yields obvious canonical choices of branching laws, which are readily p-adically interpolated,
making the construction of rows (M) and (T) straightforward.

For higher GLN , the coefficient modules are hard to describe explicitly. Choices of branching
laws are no longer canonical, and must be carefully aligned for p-adic interpolation to even be
possible. A key technical result of [38] was Theorem 2.4.1, where Januszewski, Raghuram and one
of us carried out such an alignment, using finite-dimensional coefficient modules, for fixed λ and
j varying in a finite set. However, their method does not generalise to our infinite-dimensional
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distribution coefficients. In this paper, we develop a new way of aligning branching laws, sketched
in §1.2.2 below, and use it to construct Evλ in our setting. We also explain how to further align
these branching laws as λ varies in a family Ω, and use this to construct EvΩ.

1.2.2. p-adic L-functions for finite slope RASCARs. Our first main result is the construction
of a p-adic L-function attached to a finite slope RASCAR of GL2n. More precisely, as predicted
by Panchishkin [66] we construct a p-adic distribution on Galp, the Galois group of the maximal
abelian extension of F unramified outside p∞, satisfying growth and interpolation properties.

Overconvergent cohomology groups are defined by replacing the algebraic coefficients V ∨
λ

with spaces of p-adic distributions Dλ and DΩ, where Ω is a (rigid analytic) family in which the
weight λ varies. To work at Q-parahoric level, as mentioned above (see also §1.2.3 below), we
use a new class of parahoric distributions from our companion paper [19], described here in §3.
These spaces are constructed as a ‘double induction’: first we take an algebraic induction of λ to
H, and then a locally analytic induction to the parahoric Jp ⊂ G(Qp). These distributions are
analytic along the unipotent radical of Q, but algebraic along all other variables (unlike Iwahoric
distributions, which are analytic in all variables).

At any fixed λ, the space Dλ admits V ∨
λ as a quotient, inducing a specialisation map

rλ : H•
c(SK(π̃),Dλ)→ H•

c(SK(π̃),V
∨
λ ).

We say the refinement π̃ = (π, {αp}p|p} is non-Q-critical if rλ becomes an isomorphism after
restricting to the generalised Hecke eigenspaces at π̃ (see Definition 3.14); this guaranteed by
having non-Q-critical slope at p (Theorem 3.16). For non-Q-critical π̃, lifting ϕπ̃ under the
isomorphism rλ, we obtain a class Φπ̃ ∈ Ht

c(SK(π̃),Dλ).
We now come to our major new input: the construction of a family of evaluation maps on

overconvergent cohomology groups, comprising the horizontal maps in Figure 1 and occupying
all of §4–§6. More precisely, we construct a map

Evλ : Ht
c(SK(π̃),Dλ)[U◦

p − α◦
p : p|p] −→ D(Galp,Qp)

on the {U◦
p = α◦

p}p|p eigenspace, valued in a space D(Galp,Qp) of locally analytic distributions,
which interpolates all of the Evχ,j simultaneously as χ and j vary. We note that D(Galp,Qp) is
the space which Panchishkin predicts should contain the p-adic L-function of π̃.

The existence of the map Evλ is a ‘p-adic interpolation of branching laws’ for H ⊂ G that
gives, for free, all of the classical Manin relations (as computed in [38]). More precisely, for
j1, j2 ∈ Z, let V H(j1,j2) denote the H-representation detj1

1 detj2
2 , the algebraic representation of

highest weight (j1, ..., j1, j2, ..., j2)σ∈Σ. Let w ∈ Z be the purity weight of λ (see §2.2). Then we
have the following reinterpretation of the Deligne-critical L-values (1.1):

Branching law: j ∈ Crit(λ) ⇐⇒ V H(−j,w+j) ⊂ Vλ
∣∣
H

with multiplicity one.

For each fixed j ∈ Crit(λ), the map Evχ,j depends on a (non-canonical) choice of basis vector
vj ∈ V H(−j,w+j) ⊂ Vλ|H . To construct Evλ these must be carefully aligned. We do this in §5
by reinterpreting the module Vλ as a double algebraic induction, collapsing all choices onto a
single choice of branching law for ResF/Q GLn diagonally embedded inside H. In the process,
we obtain an explicit description of the branching law for H ⊂ G.

In §6, we use our parahoric distributions to construct the required p-adic interpolation of
the above branching laws in the cyclotomic direction. The parahoric setting allows us to isolate
(in the first induction) the algebraic branching law for ResF/Q GLn fixed above, whilst allowing
the second induction to vary p-adic analytically. Essential for this interpolation is a family of
support conditions for evaluation maps, arising from a choice of open orbit representative ξ for
the spherical variety G/H. This is a representation-theoretic avatar of the familiar phenomenon
in constructing p-adic L-functions, whereby one must modify the Euler factor at p.

7
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Definition 1.1. Let π be a RASCAR of G(A) spherical at p. Suppose π admits a non-Q-
critical, Shalika Q-refinement π̃ = (π, (αp)p|p), and let Φπ̃ be the resulting overconvergent lift of
ϕπ̃, which is a U◦

p -eigenclass for all p|p. Define the p-adic L-function of π̃ to be

Lp(π̃) ..= Evλ(Φπ̃) ∈ D(Galp,Qp).

This depends on ϕπ̃, hence (by (2.22)) on the restriction of ip to the number field E; but this is
an expected indeterminacy (corresponding to [35, (14)]) which we largely suppress.

Our first main result, proved in Theorem 6.23 and illustrated in the middle row (M) of
Figure 1, is that the distribution Lp(π̃) satisfies suitable growth and interpolation properties,
justifying the terminology ‘p-adic L-function’. Observe that finite order Hecke characters of
p-power conductor, and the p-adic cyclotomic character χcyc, are characters of Galp (see §6.1.1).

Theorem A. Let π and π̃ be as in Definition 1.1. Then:

(1) Lp(π̃) is admissible of growth hp ..= vp

(∏
p|p(α◦

p)ep
)

(see Definition 6.19);

(2) for all finite order Hecke characters χ of conductor
∏

p|p p
βp and all j ∈ Crit(λ), we have

i−1
p (Lp(π̃, χχjcyc)) = A · τ(χf )nNF/Q(d)jn

∏
p|p

ep(π̃, χ, j) · e∞(π, χ, j) ·
L(p)(π ⊗ χ, j + 1

2
)

Ωϵπ
,

where ep(π̃, χ, j) is the Coates–Perrin-Riou factor at p (defined in Theorem 6.23), e∞(π, χ, j)
is the modified Euler factor at infinity (Definition 5.18), A ∈ Q× is a constant (6.25), d

is the different of F/Q, ϵ = (χχjcycη)∞ ∈ {±1}Σ, τ(χf ) is the Gauss sum, L(p)(−) is the
(finite) L-function without factors at p, and Ωϵπ is a complex period.

If hp < #Crit(λ), then the restriction of Lp(π̃) to the cyclotomic line is unique with these
properties; if further Leopoldt’s conjecture holds for F at p, then Lp(π̃) itself is unique.

Remark 1.2. Note that, exploiting work of Jiang–Sun–Tian [54], we are able to prove the
full expected period relations at infinity. As a consequence, both sides of (2) lie in an explicit
number field E(χ), with E defined in §2.9. Moreover Lp(π̃) can be taken with coefficients in a
finite extension L/Qp containing ip(E). We have suppressed this here to ease notation.

In the first draft of this paper, in the interpolation we restricted to characters ramified at all
p|p; but in a separate paper [13] with Graham and Jorza, we computed the relevant unramified
zeta integrals which – when combined with the construction here – give the full Coates–Perrin-
Riou/Panchishkin conjecture in this case. Even in the ordinary case Theorem A upgrades [38];
indeed, it also corrects a small error in the interpolation formula ibid. (see Appendix (2)).

1.2.3. Benefits of the parahoric approach. Let us now precisely highlight the benefit of using
parahoric (rather than Iwahori) distributions. Our primary motivation is the conjecture of
Panchishkin [66, Conj. 6.2]; using our approach we prove exactly the automorphic version of his
conjecture, including the growth/unicity bounds. These would not follow from Iwahori methods.

We illustrate via examples. Let π be a RASCAR of GL4(A) spherical and regular at p. Then:

• The Iwahori-invariants πIw
p are 24-dimensional, a direct sum of 24 1-dimensional simulta-

neous eigenspaces for the Hecke operators Up,1, Up,2, Up,3, with Up,i attached to
(
pIi

I4−i

)
.

An Iwahori refinement π̃′ = (π, αp,1, αp,2, αp,3) is a choice of one of these 24 eigensystems.

• The Q-parahoric invariants πJp
p are 6-dimensional, giving at most 6 Q-refinements π̃ =

(πp, αp), where αp is a choice of Up-eigenvalue on π
Jp
p .

8
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When there are 6 distinct Q-refinements, above each such (π, αp) there are 4 Iwahori refinements
π̃′

1, π̃
′
2, π̃

′
3, π̃

′
4, each with αp,2 = αp.

To work at Iwahori level, we must choose an Iwahori refinement. To lift eigenclasses to
overconvergent cohomology, we must control all of the (normalised) U◦

p,i operators; for example,
the non-critical slope bound depends on all three of the slopes hi ..= vp(α◦

p,i) ⩾ 0. Working solely
at Iwahori level, you bound the growth of the p-adic L-function only by the sum h1 + h2 + h3.

By contrast, working at Q-parahoric level, lifting requires control only of U◦
p from §1.1, the

non-critical slope bound depends only on h2, and we get growth bounded by h2.
In this paper, and its sequel [13], we show that p-adic L-functions depend only on the para-

horic refinement. In particular, in [13, §12.4, §14] we attach p-adic L-functions Lp(π̃′
i) to the four

Iwahori refinements π̃′
i above π̃ (under stronger hypotheses, and with ostensibly weaker growth)

and compare to this paper to prove that Lp(π̃) = Lp(π̃′
1) = Lp(π̃′

2) = Lp(π̃′
3) = Lp(π̃′

4) (up to ra-
tional scalar). Thus the parahoric Q-refinement is the exact amount of data required to construct
a p-adic L-function; passing to deeper level requires additional but redundant hypotheses.

We give two explicit examples from the tables at smf.compositio.nl (cf. [14, §7]).

• There is a unique RASCAR π of GL4(A) of weight λ = (12, 1,−1,−12) and level 1 (taking
j = 2, k = 14 in the table). At p = 11, π11 is Q-ordinary, but not Iwahori-ordinary. Let
π̃ be the unique Q-ordinary refinement. Using parahoric methods, we get an 11-adic L-
function L11(π̃) and can prove it is a bounded measure on Z×

11 (i.e. growth bounded by 0),
that is uniquely determined by growth and interpolation.
There are four Iwahori refinements π̃′

i above π̃, all non-critical and regular. Using only
Iwahori methods, we obtain four 11-adic L-functions L11(π̃′

i), and can prove these are
distributions on Z×

11 with growth bounded by 22, 12, 12 and 2 respectively. Without
further input all four of these might be unbounded, and three are not uniquely determined
by interpolation and these growth bounds.
Via this paper and [13], however, we know all of these 11-adic L-functions are in fact equal.

• There is a unique RASCAR of GL4(A) of weight (9, 6,−6,−9) and level 1. The non-
critical slope bounds here are vp(U◦

p,1), vp(U◦
p,3) < 4, and vp(U◦

p,2) < 13. At p = 3, there
exists a Q-refinement π̃ = (π, α) of π3 with v3(α) = 5 < 13; this is non-Q-critical slope,
so our constructions give a 3-adic L-function L3(π̃), uniquely determined by growth and
interpolation. For each of the four Iwahori refinements π̃′ = (π, α1, α2, α3) above π̃, we
have vp(α1), vp(α3) ⩾ 5 ⩾ 4, so each π̃′ has critical slope, and we have no unconditional
construction of L3(π̃′) at Iwahori level.

From [66], we expect Theorem A is optimal, and one cannot improve the non-critical slope/growth
bounds. We also expect that we construct all examples of p-adic L-functions that are: (a) at-
tached to RASCARs π of GLN (A) that are spherical and regular at p, and (b) uniquely deter-
mined by their interpolation/growth. An Iwahori approach does not give this.

A final, substantial, benefit is that at parahoric level, we can study local zeta integrals for
parahoric-invariant vectors at p|p. For such vectors the zeta integrals with unramified twists have
been computed in [13, §9], so we can prove our p-adic L-function has the expected interpolation
at all characters.

1.2.4. Existence and uniqueness of Shalika families. Our second main result is the use of the
p-adic L-functions of Theorem A to study the GL2n-eigenvariety.

We now wish to vary λ, so let λπ denote the weight of our (fixed) RASCAR π. This is a
point in a rigid analytic (parabolic) weight space W Q

λπ
of dimension d + 1 (see §3.1). For any

(parahoric-at-p) level K (see (2.20)) and for any h ⩾ hp (defined in Theorem A), there exists:

– a slope-⩽ h-adapted affinoid neighbourhood Ω of λπ in W Q
λπ

,

9
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– a sheaf DΩ on SK interpolating Dλ as λ varies in Ω, and
– a local piece EΩ,h(K) of the global parabolic eigenvariety from [19], parametrising systems

of Hecke eigenvalues occurring in the slope ⩽ h part of Ht
c(SK ,DΩ) with respect to U◦

p ,
endowed with a finite weight map

w : EΩ,h(K)→ Ω.

We introduce some necessary terminology:

– A point y ∈ EΩ,h(K) is classical if this eigensystem appears in πKy for some cohomological
automorphic representation πy.

– A Shalika point is a classical point such that πy is a RASCAR (i.e. πy is cuspidal and
admits a Shalika model).

– A classical family through π̃ of level K is an irreducible component of EΩ,h(K), containing
xπ̃, that contains a Zariski-dense set of classical points.

– A Shalika family is a classical family containing a Zariski-dense set of Shalika points.

In our earlier works [11, 17, 18], we developed methods for studying H•
c(SK ,DΩ) as an OΩ-

module. Cuspidal cohomology contributes to a continuous range of degrees {dn2, dn2 + 1, ..., t}.
As we work in top degree t, for appropriate π̃, these methods easily yield a (Shalika) point xπ̃ in
EΩ,h(K). To study the geometry around this point, it is crucial to understand the OΩ-torsion in
Ht

c(SK ,DΩ). However, previous methods controlled this torsion only in bottom degree dn2. For
n > 1, cuspidal cohomology is supported in multiple degrees; so existing methods say nothing
about the local geometry around xπ̃, including the dimension of components through xπ̃. Indeed,
such methods do not even rule out xπ̃ being an isolated point. It is thus a non-trivial question
if there are any classical families, let alone Shalika families, containing π̃.

Let K1(π̃) ⊂ G(Af ) be the open compact subgroup that is parahoric at p and Whittaker new
level (for π) away from p (see (7.2)). Our second main result, proved in Theorem 7.6, describes
precisely the local geometry of EΩ,h(K1(π̃)) at xπ̃ and, in particular, answers positively the above
question for RASCARs under very mild technical assumptions.

Theorem B. Let π be a RASCAR of G(A), and π̃ a Shalika p-refinement. Suppose that

(a) λπ is regular,

(b) π̃ has non-Q-critical slope, and

(c) the p-adic Galois representation ρπ attached to π is absolutely irreducible.

Then EΩ,h(K1(π̃)) is étale over Ω at xπ̃. Up to shrinking Ω, w induces an isomorphism C ∼−→ Ω,
where C is the connected component of EΩ,h(K1(π̃)) through xπ̃, and C is a Shalika family.

The same conclusions hold replacing (a) and (b) with the strictly weaker assumptions that

(a′) λπ is H-regular (Definition 7.5) and Lp(π̃) is non-zero, and
(b′) π̃ is strongly non-Q-critical (Definition 3.14).

See §7.1 for more details.
A technically challenging strategy for proving existence of the Shalika family C is to exhibit

it as a p-adic Langlands transfer from GSpin2n+1/F . This requires a number of additional
hypotheses for general spin groups. Instead, we argue directly using the groups Ht

c(SK ,DΩ) –
without recourse to GSpin2n+1 – and prove existence via a novel application of our evaluation
maps, suggested to us by Eric Urban. We briefly summarise this argument. We complete the
construction of Figure 1, including the map EvΩ : Ht

c(SK ,DΩ) −→ D(Galp,OΩ), in §6. A
standard argument provides a class Φ ∈ Ht

c(SK ,DΩ) lifting Φπ̃ under the natural specialisation
map. Then:

10
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• If Lp(π̃) ̸= 0, then – by the proof of Theorem A – we know Evλ(Φπ̃) ̸= 0. Hence, via the
commutativity of the top square in Figure 1, we deduce EvΩ(Φ) ̸= 0.

• The map EvΩ is OΩ-linear, and valued in the torsion-free OΩ-module D(Galp,OΩ). As
EvΩ(Φ) ̸= 0, we deduce Φ is non-OΩ-torsion.

• It follows that Ht
c(SK(π̃),DΩ) is a faithful OΩ-module. We exploit this to deduce existence

of a component in the eigenvariety of maximal dimension through π̃.

If there is a non-zero Deligne-critical L-value for π (which always exists when λπ is regular),
then the p-adic L-function is non-zero. The above argument then yields a classical family in the
eigenvariety at the (sufficiently small) level K(π̃) used in §1.2.2. To upgrade this to a Shalika
family, we again exploit our evaluation maps, giving (via Proposition 5.15) a criterion for being
Shalika that is open over the eigenvariety.

It remains to prove uniqueness and étaleness. However, to exploit non-vanishing L-values,
we must work at level K(π̃). As this is inexplicit, it is difficult to further control the geometry
of families of level K(π̃). We can obtain more control by working at new tame level, that is
at level K1(π̃). We perform a delicate level-switching argument – using the local Langlands
correspondence and p-adic Langlands functoriality (see §7.5) – to transfer the family to level
K1(π̃), where we then complete the proof of Theorem B.

We conclude §7 with an application of Theorem B to the global geometry of the eigenvariety.
In Theorem 7.26, we show that if π̃ is as in Theorem B, and I is the (unique) irreducible
component of the global eigenvariety through π̃, then every non-Q-critical slope classical point
of I is Shalika. We actually prove more: that every point (classical or not) of I is symplectic,
arising from GSpin2n+1. Our proof goes through p-adic Langlands functoriality and occupies all
of §7.7. We thank the referee for pushing us to prove such a result.

Remark 1.3. Theorem B describes the geometry of the Q-parabolic eigenvariety. This is nat-
ural in light of §1.2.3. Eigenvarieties for non-minimal parabolics have been well-studied; for a
summary of constructions and arithmetic applications, see [19, Intro]. Major recent applications
include Bloch–Kato for GSp4 [60, §17] and modularity of elliptic curves over imaginary quadratic
fields [30, §2.2].

The most traditional flavour of eigenvariety comes attached to a minimal parabolic subgroup,
the Borel subgroup B ⊂ G, corresponding to Iwahoric level at p. With appropriate adaptation,
and stronger assumptions, our methods also apply to this case, and we can prove the analogue
of Theorem B for the Iwahori eigenvariety over the pure weight space (whose dimension grows
with n). This – and applications to families of p-adic L-functions – is the subject of a follow-up
paper [13] with Graham and Jorza.

1.2.5. p-adic L-functions in Shalika families. To prove Theorem A, we worked at a specific
(inexplicit) level K(π̃), at which we have a precise connection to L-values. In Theorem B, we
worked at a second specific (explicit) level K1(π̃), where we obtain control over p-adic families.

When π is everywhere spherical away from p – that is, when π has tame level 1 – these two
levels coincide. More precisely, we may take

K(π̃) = K1(π̃) =
∏
p|p

Jp
∏
v∤p∞

GL2n(Ov).

In Chapter 8, we crucially exploit this to vary p-adic L-functions in families in the tame level 1
case (see Theorem C below).

The obstruction to generalising to higher tame level arises from local representation theory:
namely, given a place v ∤ p∞ such that πv is ramified, we need to find explicit ‘test vectors’
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in the Shalika model of πv such that an attached Friedberg–Jacquet zeta integral computes the
L-factor of πv (see (2.15)). It is known that such vectors always exist abstractly, but explicit
vectors – of the kind required for variation of p-adic L-functions – have not yet been found.

In §8.1 and §8.2, we describe, in very general terms, what kind of results would allow us to
generalise Theorem C to higher tame level. On a concrete level, we hypothesise a possible theory
of explicit test vectors, via Shalika new vectors, a Shalika analogue of the classical (Whittaker)
newform theory of [51] (see Definition 8.2). Ramified examples where these hypotheses are
satisfied have been found in the work [39] of the second author and Jorza.

We assume π satisfies this hypothesis for the rest of the paper. This allows us to work
solely at a ‘Shalika’ level where we precisely see L-values, whilst still controlling the geometry
of a modified eigenvariety E S

Ω,h, defined by introducing additional diamond operators at places
v ∈ S = {v ∤ p∞ : πv ramified}. In particular, we prove the following refinement of Theorem B.

Theorem B′. (Theorem 8.11). Suppose that: (a) λπ is regular, (b) π̃ has non-Q-critical slope,
and (c) for all v, Hypothesis 8.6 holds for c = c(πv). Then:

• E S
Ω,h is étale over Ω at π̃, and (up to shrinking Ω) the connected component C through π̃

is a Shalika family mapping isomorphically onto Ω under w.

• C contains a very Zariski-dense set Cnc of classical points satisfying the conditions of
Definition 1.1 (see also Conditions 2.8). For all v, every point in Cnc has a Shalika new
vector of conductor c(πv).

• There exists an eigenclass ΦC ∈ Ht
c(SK(π̃),DΩ), interpolating the classes Φπ̃y for y ∈ Cnc

(upto scaling by p-adic periods).

When π has tame level 1, condition (c) is automatically satisfied with each c(πv) = 0, and
the eigenvariety E S

Ω,h is nothing but EΩ,h from above; so there are a ready supply of RASCARs
where this result is unconditional. In general, we may also weaken assumptions as in Theorem B.

Given Theorem B′, standard methods give the analytic variation of Lp(π̃) over C as a formal
consequence of our evaluation maps in families. The definition of the multi-variable p-adic L-
function is summarised in row (T) of Figure 1.

Definition 1.4. Under the hypotheses of Theorem B′, let C be the Shalika family through π̃.
Define the p-adic L-function over C to be

LC
p

..= EvΩ(ΦC ) ∈ D(Galp,OΩ).

Let X (Galp) be the Qp-rigid space of characters on Galp; then via the Amice transform ([23,
Def. 5.1.5], building on [1, 73]), we may view LC

p as a rigid function

LC
p : C ×X (Galp)→ Cp.

Our third main result (Theorem 8.21) is that LC
p interpolates Lp(π̃y) as y varies in the set Cnc.

Theorem C. Suppose the hypotheses of Theorem B′. Then at every y ∈ Cnc, there exists a set
{cϵy ∈ L× : ϵ ∈ {±1}Σ} of p-adic periods such that for every χ ∈X (Galp), we have

LC
p (y, χ) = c(χη)∞

y · Lp(π̃y, χ). (1.2)

Let X (Galcyc
p ) ⊂ X (Galp) be the cyclotomic line, i.e. the Zariski-closure of {χjcyc : j ∈ Z}.

Via Theorem A, LC
p simultaneously interpolates the values L(πy×χ, j+ 1

2 ) over the set of points

Crit(C ) =
{

(y, χχjcyc) ∈ C ×X (Galcyc
p ) : y ∈ Cnc, j ∈ Crit(w(y)), χ finite order

}
.

The set Crit(C ) is Zariski-dense in C ×X (Galcyc
p ), so the restriction L C

p |C×X (Galcyc
p ) is uniquely

determined by this interpolation. Specialising at π̃, we deduce:
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Corollary 1.5. Assume the hypotheses of Theorem B′. Up to a non-zero scalar, the restriction
of Lp(π̃) to the cyclotomic line is uniquely determined by interpolation over Crit(C ).

If further Leopoldt’s conjecture holds for F at p, then we obtain a similar uniqueness
statement for Lp(π̃) itself, made precise in §8.5. These results should be compared to The-
orem A, where we showed Lp(π̃) is determined by growth and interpolation, but only when
hp < #Crit(λπ).

Finally, let us highlight some examples for which the assumptions of Theorem C are satisfied.
Let f be a classical cuspidal Hilbert eigenform of level 1 and weights ⩾ 3. The symmetric cube
Sym3(f) is a RASCAR for GL4 of level 1 [45, Prop. 8.1.1]. When Sym3(f) is non-Q-critical (e.g.
if f itself is p-ordinary), then Theorem C shows that its p-adic L-function, as constructed in
Theorem A, can be interpolated over the Hilbert cuspidal eigenvariety from [3]. More generally,
Newton–Thorne recently showed that arbitrary symmetric powers of f are RACARs in [64, 63],
and the odd symmetric powers are RASCARs.
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2. Automorphic preliminaries

The following fixes notation and recalls how to attach a compactly supported cohomology class
(with p-adic coefficients) to a suitable automorphic representation. Everything here is standard.

2.1. Notation. Let F be a totally real number field of degree d over Q, let OF be its ring of
integers and Σ the set of its real embeddings. Let A = Af ×R denote the ring of adeles of Q.
For v a non-archimedean place of F , we let Fv be the completion of F at v, denote by Ov the
ring of integers in Fv, and fix a uniformiser ϖv.

Let n ⩾ 1 and let G be the algebraic group ResOF /ZGL2n, B = ResOF /ZB2n be the Borel
subgroup of upper triangular matrices, with opposite B−, N and N− be the unipotent radicals of
B and B− respectively, and T = ResOF /ZT2n be the maximal split torus of diagonal matrices. We
have decompositions B = TN and B− = N−T . We let K∞ = C∞ZG(R), where C∞ = O2n(R)d
is the standard maximal compact subgroup of G(R) and ZG is the centre of G. For any reductive
real Lie group A we let A◦ denote the connected component of the identity.

Let H denote the algebraic group ResOF /Z(GLn×GLn), which we frequently identify with
its image under the natural embedding ι : H ↪→ G given by (h, h′) 7→

(
h 0
0 h′

)
.

Let ZH be the centre of H. We write Q = ResOF /Z
(GLn Mn

0 GLn

)
for the maximal standard

parabolic subgroup of G (containing B) whose Levi subgroup is H, and we denote by NQ its
unipotent radical.

Fix a rational prime p and an embedding ip : Q ↪→ Qp. We fix an extension of ip to an
isomorphism ip : C ∼−→ Qp. For each embedding σ : F ↪→ R in Σ, there exists a unique prime
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p|p in F such that σ extends to an embedding Fp ↪→ Qp; we write p(σ) for this prime, and let

Σ(p) ..= {σ ∈ Σ : p(σ) = p}.

We let OF,p ..= OF ⊗ Zp.
Let F p∞ be the maximal abelian extension of F unramified outside p∞, and let Galp ..=

Gal(F p∞/F ), which has the structure of a p-adic Lie group. Let Galcyc
p

..= Gal(Qp∞F/F ).
Given an ideal I ⊂ OF we let U (I) ..= {x ∈ Ô×

F : x ≡ 1 (mod I)}, and consider the narrow
ray class group Cℓ+

F (I) = F×\A×
F /U (I)F×◦

∞ .

All our group actions will be on the left. If M is a R-module, with a left action of a group Γ,
then we write M∨ = HomR(M,R), with associated left dual action

(γ · µ)(m) = µ(γ−1 ·m).

For an affinoid rigid space X, we write OX (or, for clarity of notation, occasionally O(X))
for the ring of rigid functions on X, so X = Sp(OX).

2.2. The weights. Let X∗(T ) be the set of algebraic characters of T . Each element of X∗(T )
corresponds to an integral weight λ = (λσ)σ∈Σ, where

λσ = (λσ,1, . . . , λσ,2n) ∈ Z2n.

• We say that λ is B-dominant if it satisfies

λσ,1 ⩾ . . . ⩾ λσ,2n for each σ ∈ Σ,

and we let X∗
+(T ) ⊂ X∗(T ) be the subset of B-dominant weights.

• We say that λ is pure if there exists w ∈ Z, the purity weight of λ, such that

λσ,i + λσ,2n−i+1 = w for each σ ∈ Σ and i ∈ {1, . . . , 2n}.

We denote by X∗
0 (T ) ⊂ X∗

+(T ) the subset of pure B-dominant integral weights; these are
exactly those supporting cuspidal cohomology [33, Lem. 4.9].

• We say λ is regular if
λσ,i > λσ,i+1 for all σ and i.

We emphasise that a RACAR π does not necessarily have regular weight; e.g. π can have
(non-regular) weight λ = (0, ..., 0).

For λ ∈ X∗
+(T ), we let Vλ be the algebraic irreducible representation of G of highest weight

λ; for a sufficiently large field L/Qp, the L-points Vλ(L) can be explicitly realised as

Vλ(L) = {f : G(Qp)→ L algebraic : (2.1)
f(n−tg) = λ(t)f(g) for all n− ∈ N−(Qp), t ∈ T (Qp), g ∈ G(Qp)}.

The (left) action of G(Qp) is by right translation, i.e. (h · f)(g) = f(gh) for g, h ∈ G(Qp) and
f ∈ Vλ. Let V ∨

λ denote the linear dual, with its (left) dual action; we have an isomorphism
V ∨
λ
∼= Vλ∨ where

λ∨ = (λ∨
σ )σ∈Σ, λ∨

σ = (−λσ,2n, . . . ,−λσ,1).

Note λ∨ = −w2n(λ) is the contragredient of λ, for w2n the longest Weyl element for G. Note the
central characters of V ∨

λ and Vλ are inverse to each other, and if λ is pure, then as G-modules
we have (e.g. [45, §2.3])

V ∨
λ
∼= Vλ ⊗ [NF/Q ◦ det]−w.
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By Zariski-density any f ∈ Vλ is uniquely determined by f |G(Zp). We have a natural integral sub-
space Vλ(OL) of f ∈ Vλ(L) such that f(G(Zp)) ⊂ OL; we let V ∨

λ (OL) = HomOL
(Vλ(OL),OL).

Let X∗(H) be the set of algebraic characters of H. Each element of X∗(H) is identified with
an integral weight

(j, j′) = (jσ, j′
σ)σ∈Σ, jσ, j

′
σ ∈ Z.

We say (j, j′) ∈ X∗(H) is Q-dominant if jσ ⩾ j′
σ for each σ ∈ Σ, and let X∗

+(H) ⊂ X∗(H) be
the subset of Q-dominant weights. We say that (j, j′) ∈ X∗(H) is pure if there exists w ∈ Z such
that jσ + j′

σ = w for all σ ∈ Σ, and let

X∗
0 (H) ⊂ X∗

+(H)

be the subset of pure Q-dominant weights. Since B ⊂ Q, we naturally have

X∗(H) ⊂ X∗(T ), X∗
+(H) ⊂ X∗

+(T ), X∗
0 (H) ⊂ X∗

0 (T ).

Given a pure B-dominant integral weight λ = (λσ)σ∈Σ, we define a set

Crit(λ) ..= {j ∈ Z : −λσ,n ⩽ j ⩽ −λσ,n+1 ∀σ ∈ Σ}. (2.2)

If π is a RACAR for G(A) of weight λ (which we take to mean cohomological with respect to
V ∨
λ , in the sense of §2.5), then [45, §6.1] proves

j ∈ Crit(λ) ⇐⇒ for all finite order Hecke characters χ of F , the L-value

L(π ⊗ χ, j + 1
2 ) is critical in the sense of Deligne.

2.3. Local systems and Betti cohomology. Let K ⊂ G(Af ) be an open compact sub-
group. The locally symmetric space of level K is the d(2n− 1)(n+ 1)-dimensional real orbifold

SK ..= G(Q)\G(A)/KK◦
∞. (2.3)

2.3.1. Archimedean local systems. Let M be a left G(Q)-module such that ZG(Q)∩KK◦
∞ acts

trivially (else, the local systems we define are zero). To M we attach a local system M =MK

on SK , defined as the locally constant sections of

G(Q)\[G(A)×M ]/KK◦
∞ −→ SK ,

with action γ(g,m)kz = (γgkz, γ ·m). We use calligraphic letters for such local systems.
Applying to M = V ∨

λ (E) for a characteristic zero field E, we can consider Betti cohomology
groups H•

∗(SK ,V∨
λ,K(E)) where ∗ = ∅ for the usual and ∗ = c for the compactly supported ones.

Given any finite index subgroup K ′ ⊂ K one has

p∗
K′,KV∨

λ,K = V∨
λ,K′ ,

where pK′,K : SK′ → SK is the natural projection. The adjunction yields then a natural
homomorphism

H•
∗(SK ,V∨

λ,K(E))→ H•
∗(SK , (pK′,K)∗p

∗
K′,KV∨

λ,K(E)) = H•
∗(SK′ ,V∨

λ,K′(E)).

allowing us to consider the ‘infinite level’ cohomology

H•
∗(SG,V∨

λ (E)) ..= lim−→
K

H•
∗(SK ,V∨

λ,K(E)).

This admits a natural G(Af )-action, whose K-invariants are H•
∗(SK ,V∨

λ,K(E)). Because of this
compatibility, for ease of notation we henceforth drop the subscript K and write only V∨

λ (E).
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2.3.2. Non-archimedean local systems. For the rest of the paper, we will work with cohomology
with p-adic coefficients, for which we need an appropriate notion of non-archimedean local sys-
tems on SK . Let M be a left K-module on which the centre ZG(Q) ∩KK◦

∞ acts trivially. To
M , we attach a local system M = MK on SK as the locally constant sections of

G(Q)\[G(A)×M ]/KK◦
∞ −→ SK ,

with action γ(g,m)kz = (γgkz, k−1 ·m). For these we use script letters, e.g. V ,D .
Suppose now M has a left action of G(Af ). This gives left actions of G(Q) and K on M ,

and we get associated (archimedean and non-archimedean) local systemsM and M attached to
M . One may check (see [81, §1.2.2]) there is an isomorphism

M∼= M , given on sections by (g,m) 7→ (g, g−1
f ·m).

The following is the example of most importance to us. If L/Qp contains the field of definition
of λ, then M = Vλ(L) can be realised as a space of functions f : G(Qp) → L. If µ ∈ V ∨

λ (L),
f ∈ Vλ(L), and g ∈ G(Qp), then V ∨

λ (L) carries an action of h ∈ G(Af ) by

(h · µ)[f(g)] ..= µ[f(gh−1
p )],

where hp is the image of h under the projection G(Af ) → G(Qp). We get two local systems
V∨
λ (L) and V ∨

λ (L), and as above, we get an isomorphism V∨
λ
∼= V ∨

λ .

2.3.3. Hecke operators. Let M be a left module for G(Q) (resp. K), and let γ ∈ G(Af ), which
we suppose acts on M . As in [38, §1.4] define a Hecke operator on H•

c(SK ,M) by

[KγK] ..= Tr(pγKγ−1∩K,K) ◦ [γ] ◦ p∗
K∩γ−1Kγ,K : H•

c(SK ,M)→ H•
c(SK ,M),

where Tr is the trace map attached to the finite cover SγKγ−1∩K → SK , pK′,K : SK′ → SK is
the natural projection, and

[γ] : H•
c(SK∩γ−1Kγ ,M)→ H•

c(SγKγ−1∩K ,M)

is given on local systems by (g,m) 7→ (gγ−1, γ ·m) (and similarly for M -coefficients).
One can check that if M is a G(Af )-module as in §2.3.2, then the isomorphism

H•
c(SK ,M) ∼−→ H•

c(SK ,M ) (2.4)

induced from the isomorphism M∼= M is Hecke-equivariant [81, §1.2.5].

2.3.4. Operators at infinity. If σ ∈ Σ, then Kσ/K
◦
σ = {±1}, and thus K∞/K

◦
∞ = {±1}Σ. Any

character ϵ : K∞/K
◦
∞ → {±1} can also be identified with an element of {±1}Σ. If M is a module

upon which K∞/K
◦
∞ acts, let M ϵ be the submodule upon which the action is by ϵ. If M is a

vector space over a field of characteristic ̸= 2, then M = ⊕ϵM ϵ. Since the group acts naturally
on SK and its cohomology, and this action commutes with the G(Af )-action, we thus obtain
decompositions of its cohomology into Hecke-stable submodules (see e.g. [45, p.15]).

2.4. The spherical Hecke algebra. Let π be a RACAR of G(A) of weight λ, and let

S = {v ∤ p∞ : πv not spherical}

be the set of bad places for π. Let

K =
∏
v∤∞ Kv ⊂ G(Af )
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be an open compact subgroup such that πKf ̸= 0; for v /∈ S ∪ {p|p}, we take

Kv = K◦
v

..= GL2n(Ov).

We now introduce the (unramified) Hecke algebra. Let X+
∗ (T2n) denote the set of algebraic

B-dominant cocharacters of T2n ⊂ GL2n, identified with tuples ν = (ν1, . . . , ν2n) ∈ Z2n with

ν1 ⩾ ν2 ⩾ · · · ⩾ ν2n, via x 7→ diag(xν1 , . . . , xν2n).

Definition 2.1. For v /∈ S ∪ {p|p}, and any ν ∈ X+
∗ (T2n), let Tν,v ..= [K◦

vν(ϖv)K◦
v ]. The un-

ramified Hecke algebra of level K is the commutative algebra H′ generated by all such operators:

H′ ..= Z[Tν,v : ν ∈ X+
∗ (T2n), v /∈ S ∪ {p|p}].

For any choice of K such that Kv = K◦
v for v /∈ S ∪ {p|p}, the algebra H′ acts on πK via

right translation, and on H•
∗(SK ,−) as described in §2.3.3.

Definition 2.2. Let E be a number field containing the Hecke field of πf . Attached to π we
have a homomorphism

ψπ : H′ ⊗ E → E

which for ν ∈ X+
∗ (T2n) and v /∈ S ∪ {p|p} sends Tν,v to its eigenvalue acting on the line πK

◦
v

v .
Let mπ ..= ker(ψπ), a maximal ideal in H′ ⊗E. If L is any field containing E, we get an induced
maximal ideal in H′ ⊗ L, which in an abuse of notation we also denote mπ.

Note in the set-up above, if M is a finite-dimensional L-vector space with an action of H′,
then the localisation Mmπ is the generalised eigenspace M⟦mπ⟧ attached to ψπ.

2.5. Cohomology classes attached to RACARs. We now attach compactly supported
cohomology classes to RACARs. All the discussions in §2.5 are standard, and culminate in
Proposition 2.3 below.

First, we recall standard results on cuspidal cohomology from [25, 33]. For a weight λ ∈
X∗

0 (T ), the Betti cohomology H•(SG,V∨
λ (C)) is an admissible G(Af )-module. It admits a

G(Af )-submodule H•
cusp(SG,V∨

λ (C)), which we can describe using relative Lie algebra coho-
mology as

H•
cusp(SG,V∨

λ (C)) =
⊕
π

H•(g∞,K
◦
∞;π∞ ⊗ V ∨

λ (C)
)
⊗ πf , (2.5)

where g∞ = Lie(G∞) and the sum is over all RACARs π of G(A). If π contributes non-trivially
to the direct sum in (2.5), then we say it has weight λ, and it then contributes to all degrees i
where

Hi(g∞,K
◦
∞;π∞ ⊗ V ∨

λ (C)) ̸= 0,

which by [33, p. 120] (see also [45, (3.4.2)]) is for i in the range

dn2 ⩽ i ⩽ d(n2 + n− 1) =.. t. (2.6)

Denote the K-invariants by

H•
cusp(SK ,V∨

λ (C)) ..= H•
cusp(SG,V∨

λ (C))K ⊂ H•(SK ,V∨
λ (C)).

If π has weight λ, then π contributes to H•
cusp(SK ,V∨

λ (C)) if and only if πKf ̸= {0}.
The action of the Hecke algebra H′ on H•(SK ,V∨

λ (C)) preserves the cuspidal subspace. If we
take K-invariants in (2.5), and localise the resulting H′-module at mπ ⊂ H′, then by the Strong
Multiplicity One Theorem only the π-summand in the right-hand side survives, i.e.

H•
cusp(SG,V∨

λ (C))mπ = H•(g∞,K
◦
∞;π∞ ⊗ V ∨

λ (C)
)
⊗ πKf .
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There is a natural action of K∞/K
◦
∞ on the factor at infinity, hence on cuspidal cohomology,

and taking ϵ-parts for ϵ ∈ {±1}Σ (as in §2.3.4), we then obtain

H•
cusp(SG,V∨

λ (C))ϵmπ
= H•(g∞,K

◦
∞;π∞ ⊗ V ∨

λ (C)
)ϵ ⊗ πKf . (2.7)

As in [45, §4.1], for degree t (that is, at the top of the range (2.6)) we have

dimC Ht(g∞,K
◦
∞;π∞ ⊗ V ∨

λ (C))ϵ = 1 (2.8)

for all ϵ ∈ {±1}Σ. Fixing a basis Ξϵ∞ of (2.8) fixes an H′-equivariant isomorphism

πKf
∼−→ Ht

cusp(SK ,V∨
λ (C))ϵmπ

,

defined by φf 7→ Ξϵ∞ ⊗ φf .
By [40], if π is a RACAR, then it does not contribute to the Eisenstein cohomology, so after

localising we have
H•

cusp(SK ,V∨
λ (C))mπ

∼= H•(SK ,V∨
λ (C))mπ .

Since π is cuspidal, the boundary cohomology vanishes after localising at mπ; so the boundary
exact sequence yields an isomorphism

H•
c(SK ,V∨

λ (C))mπ
∼−→ H•(SK ,V∨

λ (C))mπ
.

Combining gives an isomorphism

πKf
∼−→ Ht

c(SK ,V∨
λ (C))ϵmπ

. (2.9)

Finally, via our fixed isomorphism ip : C ∼= Qp and the isomorphism (2.4), we have isomorphisms

H•
c(SK ,V∨

λ (C)) ip−−→∼ H•
c(SK ,V∨

λ (Qp)) (2.10)
(2.4)−−−−→∼ H•

c(SK ,V ∨
λ (Qp)).

As all the maps above are Hecke-equivariant, combining we finally deduce:

Proposition 2.3. There is a Hecke-equivariant isomorphism

πKf
∼−→ Ht

c(SK ,V ∨
λ (Qp))ϵmπ

. (2.11)

This isomorphism is non-canonical, depending on the choice of basis Ξϵ∞ of (2.8).

2.6. Shalika models and Friedberg–Jacquet integrals. We recall some relevant facts
about Shalika models (see e.g. [45, §1,§3.1]). Let

S/F = {s =
(
h
h

)
·
(
In X

In

)
: h ∈ GLn, X ∈ Mn}

be the Shalika subgroup of GL2n/F , and S = ResF/QS/F . Let ψ be the standard non-trivial
additive character of F\AF from [38, §4.1], and let η be a Hecke character of F×\A×

F . For s ∈ S,
write

(η ⊗ ψ)(s) = η(det(h))ψ(Tr(X)).

A cuspidal automorphic representation π of G(A) (of weight λ) is said to have an (η, ψ)-Shalika
model if there exist φ ∈ π and g ∈ G(A) such that

Sηψ(φ)(g) ..=
∫
ZG(A)S(Q)\S(A)

φ(sg) (η ⊗ ψ)−1(s)ds ̸= 0. (2.12)
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This forces ηn to be equal to the central character of π, and hence η = η0| · |w, where η0 has
finite order and w is the purity weight of λ. If (2.12) holds, then Sηψ defines an intertwining
π ↪→ IndG(A)

S(A) (η ⊗ ψ), realising π inside the space of functions W : G(A)→ C satisfying

W
((

h 0
0 h

)
( 1 X

0 1 ) •
)

= η(det(h))ψ(tr(X))W (•) ∀h ∈ GLn(F ), X ∈Mn(F ). (2.13)

If π has an (η, ψ)-Shalika model, then for each place v of F the local component πv has a local
(ηv, ψv)-Shalika model [45, §3.2], that is, we have an intertwining

Sηv

ψv
: πv ↪→ IndGL2n(Fv)

S(Fv) (ηv ⊗ ψv). (2.14)

Remark 2.4. Note (2.12) defines a canonical global intertwining. We emphasise that the local
intertwinings are not canonical. However the local Shalika model is unique in the sense that

dimC HomGL2n(Fv)

[
πv, IndGL2n(Fv)

S(Fv) (ηv ⊗ ψv)
]

= 1

(see [65, 31]), so the image Sηv

ψv
(πv) of Sηv

ψv
is canonical. We henceforth fix a (non-canonical)

choice of intertwining Sηf

ψf
of πf (or equivalently, via (2.12), an intertwining Sη∞

ψ∞
of π∞).

When πv is spherical it is shown in [7, Prop. 1.3] that it admits a (ηv, ψv)-Shalika model if
and only if π∨

v = πv ⊗ η−1
v . In this case we deduce ηv is unramified.

Let π be a cuspidal automorphic representation of G(A), and χ a finite order Hecke character
for F . For W ∈ Sηψ(π) (the image of π under Sηψ) consider the Friedberg–Jacquet zeta integral

ζ(s,W, χ) ..=
∫

GLn(AF )
W

[(
h

In

)]
χ(det(h)) | det(h)|s− 1

2 dh,

which converges absolutely in a right-half plane and extends to a meromorphic function in s ∈ C.
When W = ⊗vWv for Wv ∈ Sηv

ψv
(πv), this integral is a product of local zeta integrals ζ(s,Wv, χv).

A Friedberg–Jacquet test vector WFJ
v ∈ Sηv

ψv
(πv) is a vector such that for all unramified quasi-

characters χv : F×
v → C×, we have

ζv
(
s+ 1

2 ,W
FJ
v , χv

)
= [NF/Q(v)sχv(ϖv)]nδv · L

(
πv ⊗ χv, s+ 1

2
)
, (2.15)

where δv is the valuation of the different of Fv and L(πv⊗χv, s+ 1
2 ) is the Langlands L-function

of πv ⊗χv. By [41, Prop. 3.1], if π is a RACAR admitting a (η, ψ)-Shalika model, then for every
finite place v there exists such a Friedberg–Jacquet test vector in Sηv

ψv
(πv). If πv is spherical,

then one can take WFJ
v to be a spherical vector, i.e. a vector fixed by GL2n(Ov), normalised so

that WFJ
v (t−δv

v ) = 1 [41, Prop. 3.2], [38, Prop. 3.3].

2.7. Parahoric p-refinements. Let

Jp = {g ∈ GL2n(Op) : g (mod p) ∈ Q(Op/p)} ⊂ GL2n(Fp) (2.16)

be the parahoric subgroup of type Q. We will always assume πp is Q-parahoric-spherical, that
is, admits Jp-fixed vectors. Recall ι(h, h′) =

(
h 0
0 h′

)
, and let tp = ι(ϖpIn, In), recalling ϖp is a

uniformiser of Fp. On π
Jp
p , we have the Hecke operator

Up := [JptpJp].

Definition 2.5. A Q-refinement π̃p = (πp, αp) of πp is a choice of Up-eigenvalue αp on πJpp . We
say a Q-refinement π̃p is regular if αp is a simple Up-eigenvalue on π

Jp
p ; that is,

dimC π
Jp
p ⟦Up − αp⟧ = 1.

We say π̃p is Shalika if it is regular and if for any generator Wp of Sηpψp
(πJpp )⟦Up − αp⟧, we have

Wp(t−δpp ) ̸= 0. (2.17)
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Remark 2.6. If π̃p is a Shalika Q-refinement, then for h ∈ GLn(Op) we see

η(det(h)) ·Wp(t−δpp ) = Wp(ι(h, h)t−δpp ) = Wp(t−δpp ι(h, h)) = Wp(t−δpp ),

using (2.13) in the first equality and Jp-invariance in the last equality. By non-vanishing, we
have ηp(O×

p ) = 1, so ηp is unramified.

Condition (2.17) is motivated by non-vanishing of a local zeta integral; see Proposition 5.20.
Indeed, if Wp ∈ Sηv

ψv
(πp)Jp is any vector, a relevant local twisted Friedberg–Jacquet zeta integral

attached to Wp is computed in [38, Prop. 3.4] and shown to be a scalar multiple of Wp(t−δpp )
(see Lemma 5.20).

The following stronger assumptions give a ready source of π̃p as above. Suppose πp is spherical
(admits GL2n(Op)-fixed vectors). In this case πp = IndGBθp is an unramified principal series, for
θp = (θp,1, ..., θp,2n) an unramified character of T (Fp). Ash–Ginzburg show in [7, Prop. 1.3]
that such πp have an (ηp, ψp)-Shalika model if and only if the θp,i’s can be ordered so that
θp,iθp,n+i = ηp for 1 ⩽ i ⩽ n. Then [38, Lem. 3.6] shows our notion of Shalika is equivalent to
being Q-regular in [38, Def. 3.5]:

Proposition 2.7. [38, Lem. 3.6]. Suppose πp = IndGBθp is spherical, that θp,iθp,n+i = ηp for
1 ⩽ i ⩽ n. Let αp = q

n2/2
p θp,n+1(ϖp) · · · θp,2n(ϖp), where qp = NF/Q(p). Suppose (πp, αp) is a

regular Q-refinement. Then it is a Shalika Q-refinement.

For spherical πp, the Q-refinements that can be described as in Proposition 2.7 are exactly
the Q-spin refinements from [14]. If all the

(2n
n

)
possible Q-refinements of πp are different, then

2n of them are Q-spin, so this condition covers a wide range of π̃p.
Globally, a (Shalika) Q-refined RA(S)CAR is a tuple π̃ = (π, {αp}p|p), for a RA(S)CAR π

where πp is Q-parahoric-spherical and (πp, αp) is a (Shalika) Q-refinement for each p|p. We will
construct p-adic L-functions and families for any Shalika Q-refined RASCAR, i.e. assuming only
that πp is parahoric-spherical at each p|p. However, if we assume further that each π̃p is as in
Proposition 2.7, we obtain slightly stronger results.

2.8. Running conditions on π̃. We finally collect our running assumptions. Fix for the rest
of the paper a finite order Hecke character η0 of F . We work with two levels of generality; our
results apply under (C2), but are more precise under the stronger assumption (C2′).

Conditions 2.8. Let π be a RACAR of G(A) of weight λ such that

(C1) π admits a global (η0| · |w, ψ)-Shalika model, for w the purity weight of π;

(C2) for each p|p, πp is parahoric-spherical admitting a Shalika Q-refinement π̃p = (πp, αp), i.e.

dimC S
ηp
ψp

(πJpp )⟦Up − αp⟧ = 1 (2.18)

(for ηp = η0,p| · |wp ) and this line admits a generator Wp such that Wp(t−δpp ) = 1.

By Remark 2.6, (C2) forces ηp to be unramified. We also use:

Conditions 2.8′. Let π be a RACAR of G(A) of weight λ such that (C1) holds and

(C2′) for each p|p, πp = IndGBθp is spherical, satisfies the hypotheses of Proposition 2.7, and
π̃p = (πp, αp) is the Shalika Q-refinement from that result.

By Proposition 2.7, (C2) is automatic from (C2′). The Q-refined RACARs π̃ described in
Theorems A, B and C of the introduction satisfy (C1-2′), hence (C1-2).
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In general αp is not p-integral. We define weight λ integral normalisations

U◦
p = λ(tp)Up, α◦

p = λ(tp)αp. (2.19)

We justify this in §3.3. A Q-refinement π̃p is equivalent to a choice of U◦
p -eigenvalue α◦

p on π
Jp
p ,

and π
Jp
p ⟦Up − αp⟧ = π

Jp
p ⟦U◦

p − α◦
p⟧. Occasionally we abuse notation and write π̃p = (πp, α◦

p).

2.9. The p-refined Hecke algebra. Let π̃ satisfy (C1-2), and let K ⊂ G(Af ) be an open
compact subgroup with

K =
∏
vKv s.t. Kv = GL2n(Ov) for v /∈ S ∪ {p|p},Kp = Jp for p|p, and πKf ̸= 0. (2.20)

Recall H′ and ψπ (which implicitly are defined at level K) from §2.4.

Definition 2.9. Define H = H′[U◦
p : p|p]. Let E = Q(π̃, η) be the number field generated by

the Hecke field of πf , the rationality field of η, and α◦
p for p|p. The character ψπ extends to

ψπ̃ : H⊗ E −→ E

sending U◦
p to α◦

p. Let mπ̃ ..= ker(ψπ̃). If M is a finite dimensional vector space with an H-action,
the localisation Mmπ̃

is the generalised eigenspace at ψπ̃, i.e.

Mmπ⟦U◦
p − α◦

p : p|p⟧ ⊂Mmπ .

2.10. Automorphic cohomology classes and periods. Recall in Remark 2.4 we fixed an
intertwining Sηf

ψf
of πf . For ϵ ∈ {±1}Σ, composing (Sηf

ψf
)−1 and (2.9) we obtain a H-equivariant

isomorphism
ΘK,ϵ : Sηf

ψf
(πKf ) ∼−→ Ht

c(SK ,V∨
λ (C))ϵmπ

;

further composing with (2.10), we obtain a p-adic analogue

ΘK,ϵ
ip

: Sηf

ψf
(πKf ) ∼−→ Ht

c(SK ,V ∨
λ (Qp))ϵmπ

, (2.21)

which is again H-equivariant.
Finally we descend to rational coefficients. Recall the number field E from Definition 2.9.

We have a natural action of Aut(C) on Sηf

ψf
(πf ) (see [45, §3.7]), endowing it with an E-structure

Sηf

ψf
(πf , E) by [45, Lem. 3.8.1]. We may (and do) take WFJ

f to be an element of Sηf

ψf
(πf , E)

(see [45, Lem. 3.9.1]). By [33, Prop. 3.1], [45, Prop. 4.2.1] and [54, §4.4], there exist complex
periods Ωϵπ such that ΘK,ϵ

/
Ωϵπ is Aut(C)-equivariant. In particular, if L/Qp is a finite extension

containing ip(E), then

Sηf

ψf
(πKf , E)

ΘK,ϵ
/

Ωϵ
π //

� _

��

Ht
c(SK ,V∨

λ (E))ϵmπ

� � (2.10) // Ht
c(SK ,V ∨

λ (L))ϵmπ� _

��
Sηf

ψf
(πKf )

ΘK,ϵ
ip

/
ip(Ωϵ

π)

∼
// Ht

c(SK ,V ∨
λ (Qp))ϵmπ

(2.22)

commutes, where the vertical arrows are the natural inclusions.

Assume that π̃ satisfies Conditions 2.8; we now produce specific cohomology classes attached
to π̃. At each finite place v of F , in [45, §6.5] the authors define a (sufficiently small) open
compact subgroup Kv ⊂ GL2n(Fv) such that there exists a Friedberg–Jacquet test vector WFJ

v ∈
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Sηv

ψv
(πv)Kv as in (2.15). As in [38], we can (and do) take Kv = GL2n(Ov) whenever πv is spherical,

and define
K(π̃) ..=

∏
p|p

Jp ·
∏
v∤p

Kv ⊂ G(Af ). (2.23)

Note K(π̃) satisfies (2.20). For p|p, let Wp be a generator of the line in (2.18), normalised so
that Wp(t−δpp ) = 1. Write

WFJ
f = ⊗p|pWp ⊗v∤p∞ WFJ

v ∈ Sηf

ψf
(πf )K(π̃).

Definition 2.10. Let

ϕϵπ̃ = ΘK(π̃),ϵ
ip

(WFJ
f )
/
ip(Ωϵπ) ∈ Ht

c(SK(π̃),V
∨
λ (L))ϵmπ

.

This is precisely the class defined in [38, §4.3.1], where the scaling by Ωϵπ is implicit. Note
that by construction, the class ϕϵπ̃ is a Up-eigenclass with eigenvalue αp for all p|p (see also [38,
Lem. 3.6]), thus lies in the p-refined generalised eigenspace Ht

c(SK ,V ∨
λ (L))ϵmπ̃

.

3. Overconvergent cohomology and classicality

We recall the Q-parahoric overconvergent cohomology and non-Q-critical slope conditions of [19],
while making the theory explicit in our setting.

3.1. Weight spaces. Recall X∗(T ), X∗
0 (T ), X∗(H) and X∗

0 (H) from §2.2.

Definition 3.1 (Weights for T ). The weight space W G for G is the rigid analytic space whose
L-points, for L ⊂ Cp any sufficiently large extension of Qp, are given by

W G(L) = Homcont(T (Zp), L×).

This space contains the set X∗
+(T ) of dominant integral weights in a natural way. We call any

element of this subspace an algebraic weight.
A weight λ ∈ W G decomposes as λ = (λ1, ..., λ2n), where each λi is a character of (OF,p)×.

We see that W G has dimension 2dn.

Definition 3.2. Let W G
0 be the (dn + 1)-dimensional pure weight space, that is the Zariski

closure of the pure, dominant, integral weights X∗
0 (T ) in W G. We have

W G
0 (L) := {λ ∈ W G(L) | ∃wλ ∈ Homcont(Z×

p , L
×) s.t.

λi · λ2n+1−i = wλ ◦NF/Q ∀ 1 ⩽ i ⩽ n}.

In §1.2.3, we highlighted the flexibility of using parahoric distributions: much weaker notions
of finite slope families and non-criticality. This comes at the cost of less flexibility in variation,
as such distributions vary only over the following (d+ 1)-dimensional subspaces of W G

0 .

Definition 3.3 (Weights for Q). Define W Q ⊂ W G to be the rigid subspace whose L-points are
continuous characters that factor through a character H(Zp) → L×. Let W Q

0
..= W Q ∩W G

0 be
the pure subspace. These are the Zariski closures of X∗(H) and X∗

0 (H) in W G.

The space W Q is the subspace of W G where

λ1 = · · · = λn(= ν1, say) and λn+1 = · · · = λ2n(= ν2, say).

The association λ 7→ (ν1, ν2) identifies W Q isomorphically with the 2d-dimensional (Hilbert)
weight space of ResF/Q GL2; the (d+ 1)-dimensional pure subspace W Q

0 is canonically identified
with the pure Hilbert weights.
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Definition 3.4. For λπ ∈ X∗
0 (T ) a pure, dominant, algebraic ‘base’ weight (implicitly, the

weight of an automorphic representation π) let

W Q
λπ

..= {λ ∈ W G
0 | λλ−1

π ∈ W Q
0 } = λπW

Q
0 ⊂ W G

0 .

Remark 3.5. To get non-trivial weight λ local systems on SK we need λ(Z(Q) ∩K) = 1. If π
is a RACAR of weight λπ, and K satisfies (2.20) for π, this condition is satisfied by existence
of an automorphic form fixed by K. It is hence also true for all λ in a sufficiently small affinoid
neighbourhood Ω ⊂ W Q

λπ
of λπ, as such λ are pure and hence

λ(Z(Q) ∩K) ⊂ (w ◦NF/Q)n(O×
F ) ⊂ {±1}

is discrete. As all of our arguments are local in W Q
λπ

, for the rest of the paper we will always
assume this condition is satisfied for the levels K and over the affinoids Ω we work with.

3.2. Parahoric distribution modules. Recall for L/Qp sufficiently large, Vλ(L) is the al-
gebraic induction IndG(Zp)

B(Zp)λ. Typically overconvergent cohomology coefficients are dual to the
locally analytic induction ABλ of λ to the Iwahori subgroup. We define Q-parahoric analogues.

If X ⊂ Qr
p is compact and R is a Qp-Banach algebra, let A(X,R) be the space of locally

analytic functions X → R, and

D(X,R) ..= Homcont(A(X,R), R)

be its topological R-dual. If W is a finite Banach R-module, then we say a function f : X →W

is locally analytic if it is an element of A(X,R)⊗RW , and write A(X,W ) for the space of such
functions. (These definitions are explained in detail in [19, §3.2.2]).

3.2.1. Parahoric algebraic induction modules. As motivation, we first give a parahoric descrip-
tion of Vλ. Let Gn = ResOF /Z GLn and recall H = Gn×Gn. Considering λ ∈ X∗

0 (T ) as a weight
for H, the algebraic representation of H of highest weight λ is

V Hλ (L) = IndH(Zp)
B−(Zp)∩H(Zp)λ = V Gn

λ′ (L)⊗ V Gn

λ′′ (L),

where λ′ = (λ1, ..., λn) and λ′′ = (λn+1, ..., λ2n). Again, V Hλ (L) is the space of algebraic
fH : H(Zp)→ L satisfying the H-analogue of (2.1).

The action of H(Zp) on V Hλ (L) yields a homomorphism

⟨·⟩λ : H(Zp)→ Aut(V Hλ (L)). (3.1)

We say a function F : G(Zp)→ V Hλ (L) is algebraic if it is an element of L[G]⊗L V Hλ (L). Let

IndG(Zp)
Q−(Zp)V

H
λ (L) ..= {F : G(Zp)→ V Hλ (L) | F algebraic,F(n−

Qhg) = ⟨h⟩λF(g) (3.2)

∀n−
Q ∈ N

−
Q (Zp), h ∈ H(Zp), g ∈ G(Zp)}.

This has a G(Zp) action by (γ · F)(g) = F(gγ).
The following lemma says ‘algebraic induction is transitive’.

Lemma 3.6. [53, §I.3.5]. There is a canonical isomorphism of G(Zp)-representations

IndG(Zp)
Q−(Zp)V

H
λ (L) ∼−→ Vλ(L), F 7→ [g 7→ F(g)(idH)].
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Proof. Evaluation at the identity idH ∈ H(Zp) induces a linear map V Hλ (L) → L, and this
induces a map

i : L[G]⊗L V Hλ (L)→ L[G],

which we interpret as a map

i :
{

algebraic G(Zp)→ V Hλ (L)
}
−→

{
algebraic G(Zp)→ L

}
,

F 7−→ [g 7→ (F(g))(idH)].

If F ∈ IndG(Zp)
Q−(Zp)V

H
λ (L), then a straightforward computation (as in [19, Prop. 4.8]) shows i(F)

satisfies (2.1). Combining, we see i restricts to a well-defined map

i : IndG(Zp)
Q−(Zp)V

H
λ (L) −→ Vλ(L).

If i(F) = 0, then for any g ∈ G(Zp), h ∈ H(Zp), we have[
F(g)

]
(h) =

[
⟨h⟩λF(g)

]
(idH)

=
[
F(hg)

]
(idH) =

[
i(F)

]
(hg) = 0,

so F = 0 and i is injective. The map i is evidentlyG(Zp)-equivariant, so i identifies IndG(Zp)
Q−(Zp)V

H
λ (L)

with a G(Zp)-subrepresentation of Vλ(L); but the latter is irreducible, so i is an isomorphism.

3.2.2. Parahoric analytic induction modules. We have

Vλ ∼= IndG(Zp)
Q−(Zp)IndH(Zp)

B−∩H(Zp)λ

by Lemma 3.6. To define Q-parahoric analogues of ABλ , in Lemma 3.6 we replace the algebraic
induction from Q−(Zp) with locally analytic induction. Let Jp ..=

∏
p|p Jp denote the parahoric

subgroup for Q, as defined in (2.16). Let AQλ (L) denote the space of functions[
f : Jp → V Hλ (L)

]
∈ A(Jp, V Hλ (L))

such that

f(n−hg) = ⟨h⟩λf(g) for all n− ∈ N−
Q (Zp) ∩ Jp, h ∈ H(Zp), and g ∈ Jp.

Again restriction identifies AQλ (L) with A(NQ(Zp), V Hλ (L)). Let

DQλ (L) = Homcont(AQλ (L), L)

be the topological dual; this is a compact Fréchet space [19, §3.2.3].

Remark 3.7. Note that any n ∈ N(Zp) can be uniquely written as a product

n = h · nQ =


1 xij. . .

. . . xkℓ

1




1 y1,n+1 · · ·
. . . · · · yn,2n

. . .
1

 ,

of h ∈ H(Zp) and nQ ∈ NQ(Zp), where xij , yij ∈ OF,p. Then for any f ∈ ABλ the restriction
f |N(Zp) is locally analytic in the xij,σ and yij,σ (thought of as Zp-coordinates on N(Zp)) . On
the other hand, for any f ∈ AQλ the restriction f |NQ(Zp) is a locally analytic function in the
yij,σ with coefficients in V Hλ . As V Hλ can be realised as a space of polynomials in the xij,σ, one
sees that AQλ is an intermediate space between Vλ and ABλ . A precise description of the natural
inclusion AQλ ⊂ ABλ is given in [19, Props. 4.9, 4.11].

Notation 3.8. Since throughout we will only be interested in Q-parahoric distributions, we will
henceforth suppress superscript Q’s and write Aλ ..= AQλ and Dλ ..= DQλ .
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3.2.3. Distributions in families. Let Ω ⊂ W Q
λπ

be an affinoid, for a fixed λπ ∈ X∗
0 (T ). If λ ∈ Ω

is algebraic, then by definition λλ−1
π ∈ W Q

0 and there is an isomorphism

V Hλ = V Hλπ
⊗ λλ−1

π (3.3)

of H(Zp)-modules [19, Lem. 3.8]. In particular, the underlying spaces of V Hλ and V Hλπ
are the

same, allowing analytic variation of the representation V Hλ as λ varies in an affinoid of W Q
λπ

.
This is crucial for variation and is not true of any higher-dimensional affinoid neighbourhoods of
λ. If we use B rather than Q, the analogue of V Hλ is the 1-dimensional character λ, which can
evidently vary in an affinoid subspace of the entire weight space W G.

The space Ω0 ..= {λλ−1
π : λ ∈ Ω} is an affinoid in W Q

0 ⊂ W G.

Lemma 3.9. The character χΩ0 : H(Zp) −→ O×
Ω0

given by h 7→ [λ0 7→ λ0(h)] is locally analytic.

Proof. This is proved in [19, §3.2.6] using [28, Prop. 8.3].

As χΩ0 is a character of H(Zp), it factors through its abelianisation

H(Zp)
det−−→ (O×

F,p)2,

so there exists a character (χ1
Ω0
, χ2

Ω0
) of (O×

F,p)2 such that

χΩ0(h1, h2) = (χ1
Ω0
◦ det(h1)) · (χ2

Ω0
◦ det(h2)).

As Ω0 is a subspace of the pure weights, there exists

wΩ0 : Z×
p → O×

Ω0

such that
χ1

Ω0
(x) · χ2

Ω0
(x) = wΩ0 ◦NF/Q(x)

for all x ∈ O×
F,p, and hence

χΩ0(h, h) = wΩ0 ◦NF/Q(det(h)). (3.4)
If λ0 ∈ Ω0, then evaluation at λ0 sends wΩ0 to wλ0 , as defined in Definition 3.2, so wΩ0 interpolates
purity weights over Ω0.

Now define V HΩ ..= V Hλπ
(L)⊗L OΩ0 , a free OΩ0 -module of finite rank, and a homomorphism

⟨·⟩Ω : H(Zp) −→ Aut
(
V Hλπ

(L)
)
⊗O×

Ω0
⊂ Aut

(
V HΩ
)
, (3.5)

h 7−→ ⟨h⟩λπ
⊗ χΩ0(h).

This makes V HΩ into an H(Zp)-representation.

Definition 3.10. Let λ ∈ Ω(L), and let λ0 = λλ−1
π ∈ Ω0(L). Define a map spλ0 : OΩ0 → L by

evaluating functions at λ0. This induces a map

spλ : V HΩ
id⊗spλ0
−−−−−→ V Hλπ

(L)⊗ λλ−1
π

(3.3)−−−→∼ V Hλ (L). (3.6)

Since spλ0 ◦ χΩ0 = λ0 by (3.3), this map is H(Zp)-equivariant. In particular, V HΩ interpolates
the representations V Hλ as λ varies in Ω (where if λ is non-algebraic, V Hλ ..= V H{λ}).

Choosing λπ fixes an isomorphism Ω ∼−→ Ω0, λ 7→ λ−1
π λ. This induces OΩ ∼−→ OΩ0 , compat-

ible with specialisation maps. Under this we may define characters

χΩ ..= λπ · χΩ0 : H(Zp)→ O×
Ω ,

wΩ ..= wλπ
· wΩ0 : Z×

p → O×
Ω (3.7)

such that evaluation at λ ∈ Ω sends χΩ to λ and wΩ to wλ. Henceforth we work only with Ω,
suppressing Ω0, and implicitly any transfer of structure is with respect to this identification.
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Definition 3.11. Define AΩ to be the space of functions[
f : Jp → V HΩ

]
∈ A(Jp, V HΩ )

such that

f(n−hg) = ⟨h⟩Ωf(g) for all n− ∈ N−
Q (Zp) ∩ Jp, h ∈ H(Zp), and g ∈ Jp. (3.8)

Define DΩ ..= Homcont(AΩ,OΩ). This is a compact Fréchet OΩ-module (see [19, Lem. 3.16]).

Remark 3.12. As in [19, Rem. 3.18], if Ω′ ⊂ Ω is a closed affinoid, then

DΩ ⊗OΩ OΩ′ ∼= DΩ′ .

As a special case, suppose Ω′ = {λ} is a single point, whence OΩ′ = L is a field, of the form
OΩ/mλ for mλ ⊂ OΩ the maximal ideal attached to λ. The map spλ : OΩ → L is reduction
modulo mλ. Then we see

spλ(DΩ) ..= DΩ ⊗OΩ OΩ/mλ ∼= Dλ(L).

In particular, DΩ interpolates Dλ as λ varies in Ω.

3.3. The action of U◦
p and slope decompositions. Fix any open compact subgroup K ⊂

G(Af ) such that Kp ⊂ Jp (e.g. K = K(π̃)). Let Ω be an affinoid in W Q
λπ

; we allow Ω = {λ} a
single weight, in which case OΩ = L. We have a natural left action of Jp on AΩ by

(k ∗ f)(g) = f(gk), k ∈ Jp, f ∈ AΩ, g ∈ Jp,

inducing a dual left action of Jp on DΩ by (k ∗ µ)(f) ..= µ(k−1 ∗ f). Thus DΩ is a left K-module
(via projection to Kp), giving a local system DΩ on the space SK as in §2.3.2. (For this to be
non-trivial, we need the centre of G(Q) ∩KK◦

∞ to act trivially. This holds by definition of the
action of K on DΩ, and since for Ω sufficiently small, one has χΩ(Z(Q) ∩ K) = 1 by Remark
3.5).

Recall tp = ι(ϖpIn, In). Note

tpNQ(Zp)t−1
p ⊂ NQ(Zp).

For any f ∈ AΩ, define a function

t−1
p ∗ f : NQ(Zp)→ V HΩ

sending n ∈ NQ(Zp) to f(tpnt−1
p ). As H(Zp) commutes with tp, using (3.8) and parahoric

decomposition, t−1
p ∗ f extends to a unique function in AΩ.

Let ∆p ⊂ G(Qp) be the semigroup generated by Jp and tp for p|p. One checks (e.g. as in [81,
§3.1.3]) that the actions of Jp and t−1

p on AΩ extend to a left action of ∆−1
p on AΩ. We get a

dual left action of ∆p on DΩ by (δ ∗ µ)(f) = µ(δ−1 ∗ f). We then equip the cohomology groups
Hi

c(SK ,DΩ) with an OΩ-linear action of the Hecke operators U◦
p

..= [KptpKp] in the usual way.

Remark 3.13. To justify the notation, note the ∗-action on Dλ(L) preserves its natural integral
subspace (see [19, §3.2.5]). Also, the ∗-action on Aλ preserves the subspace Vλ, so dualising we
see Dλ(L) admits V ∨

λ (L) as a ∗-stable quotient. We thus obtain an induced ∗-action on V ∨
λ (L).

On V ∨
λ (L), we also have the natural algebraic ·-action of G(Qp) from §2.3.2. The ∗- and

·-actions of ∆p on V ∨
λ (L) coincide for Jp ⊂ ∆p, so give the same p-adic local system V ∨

λ (L).
However, the actions of tp are different; analogously to [19, Rem. 3.23] one computes that

tp ∗ µ = λ(tp) ·
(
tp · µ

)
, µ ∈ V ∨

λ (L). (3.9)
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The two actions induce Hecke operators U∗
p and U ·

p on the classical cohomology, related by

U∗
p = λ(tp)U ·

p = ϖ

∑
σ∈Σ(p)

∑n

i=1
λσ,i

p U ·
p.

The isomorphism (2.21) is equivariant for the natural Up-operator on πKf and the operator U ·
p on

cohomology, so the class ϕϵπ̃ from Definition 2.10 is an eigenclass with U ·
p-eigenvalue αp. However

U ·
p does not preserve integrality, whilst U∗

p does. Because of this it is standard to write

Up
..= U ·

p = the usual automorphic Hecke operator on cohomology,
U◦
p

..= U∗
p = λ(tp)Up its ‘optimal integral normalisation’.

Thus ϕϵπ̃ is a U◦
p -eigenclass with eigenvalue α◦

p
..= λ(tp)αp. As U◦

p preserves integrality, vp(α◦
p) ⩾

0.
The Up and U◦

p operators of [38] coincide with ours. Their •-action on V ∨
λ is our ∗-action.

Let tp = ι(pIn, In). As ⋂
i⩾0

tipNQ(Zp)t−ip = 1,

we have tp ∈ T++
Q in the notation∗ of [19, §2.5], and (via the ∗-action) we get a Q-controlling

operator U◦
p

..= [KptpKp] on the cohomology. By §3.5 ibid., for any h ∈ Q⩾0, up to shrinking
Ω the OΩ-module H•

c(SK ,DΩ) admits a slope ⩽ h decomposition with respect to U◦
p (see [46,

Def. 2.3.1]). We let H•
c(SK ,DΩ)⩽h denote the subspace of elements of slope at most h, and note

that it is an OΩ-module of finite type.

3.4. Non-critical slope conditions for Q. Let λ ∈ X∗
0 (T ) be a pure dominant integral

weight and K as in §3.3. The natural inclusion of Vλ(L) ⊂ Aλ(L) induces dually a surjection
Dλ(L) −→ V ∨

λ (L), which is equivariant for the ∗-actions of ∆p. This induces a map

rλ : H•
c(SK ,Dλ(L)) −→ H•

c(SK ,V ∨
λ (L)), (3.10)

equivariant for the ∗-actions of ∆p on both sides; hence by Remark 3.13, it is equivariant for the
actions of U◦

p on both sides.
Let π̃ be a Q-refined RACAR of G(A) of weight λ and h ≫ 0. As H•

c(SK ,Dλ(L))⩽h is a
finite dimensional vector space, the localisation H•

c(SK ,Dλ(L))⩽hmπ̃ is the generalised eigenspace in
H•

c(SK ,Dλ(L)) where the Hecke operators act with the same eigenvalues as on π̃ (see §2.9). Abus-
ing notation, we drop the ⩽ h and just write H•

c(SK ,Dλ(L))mπ̃
for this generalised eigenspace.

Definition 3.14. Let π̃ be a Q-refined RACAR of G(A) of weight λ. We say π̃ is non-Q-critical
(at level K) if the restriction of rλ to the generalised eigenspaces

rλ : H•
c(SK ,Dλ(L))mπ̃

∼−→ H•
c(SK ,V ∨

λ (L))mπ̃

is an isomorphism. If K is clear from the context we will not specify it.
We say π̃ is strongly non-Q-critical if this is true for all K satisfying (2.20), and also with H•

c
replaced with H• (i.e., if π̃ is non-Q-critical for H• and for H•

c as in [19, Rem. 4.6]).

Recall Σ =
∐

p|p Σ(p) from §2.1. For p|p, let ep be the ramification degree of p|p.

Definition 3.15. For p|p, we say that π̃p = (πp, αp) has non-Q-critical slope if

ep · vp
(
α◦
p

)
< minσ∈Σ(p)(1 + λσ,n − λσ,n+1),

where α◦
p = λ(tp)αp. If this holds at all p|p, we say that π̃ has non-Q-critical slope.

∗As distributions in [19] are right-modules, all conventions are opposite to those here: see [19, Rem. 4.20].
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Theorem 3.16 (Classicality). If π̃ has non-Q-critical slope, then it is strongly non-Q-critical.

Proof. This is a special case of [19, Thm. 4.4, Rem. 4.6], explained in Examples 4.5 ibid.. The
root system of G/Qp

is a disjoint union, indexed by Σ, of copies of the standard root system A2n−1

of GL2n, and we denote by {β1,σ, ..., β2n−1,σ} the simple roots in the copy of A2n−1 attached to
σ ∈ Σ. The parabolic Q corresponds to the subset

∆Q = ∆\{βn,σ : σ ∈ Σ}

of the set ∆ of simple roots for G/Qp
. In the notation ibid., if αi = βn,σ with σ ∈ Σ(p) for a

prime p|p, we take ti = tp. Thus

Ui = U◦
p , vp(αi(ti)) = 1/ep,

and hcrit(ti, αi, λ) = (1 + λσ,n − λσ,n+1)/ep.

Thus Definition 3.15 gives precisely the non-critical slope condition of [19, Thm. 4.4]. Note the
level ibid. is arbitrary. Any differences in conventions are explained in [19, §4.6] (though the
reader is warned that the comparison of U◦

p and Up was computed incorrectly there; we are using
the corrected version in this paper).

Remark 3.17. It is natural to ask if there exist π̃ that are non-Q-critical (for some K) but not
strongly non-Q-critical. In the case of GL2, it is conjectured that a modular form is critical if and
only if its local Galois representation at p is split. If a Galois-theoretic criterion for non-criticality
exists more generally, then one would expect that non-Q-criticality should not depend on the
type or level of cohomology, and hence that non-Q-critical implies strongly non-Q-critical.

4. Abstract evaluation maps

We now describe an abstract theory of evaluation maps, which are linear functionals on com-
pactly supported cohomology groups. Recall that H = ResOF /Z(GLn×GLn), with diagonal
embedding ι : H ↪→ G. The underlying idea behind evaluation maps is to integrate compactly
supported cohomology classes for G over (coverings of) locally symmetric spaces for H, the so-
called automorphic cycles. The arithmetic importance of such a construction is that when we
start with a class attached to a RASCAR π (as in Definition 2.10), the resulting integrals take
the shape of relative global zeta integrals for H ⊂ G that we can relate to L-values of π.

The constructions of [45, 38] treat evaluation maps for cohomology with coefficients in the
algebraic local systems attached to V ∨

λ . In this chapter, we give a new construction that allows
coefficients in much more general local systems.

We describe the automorphic cycles, and their basic properties, in §4.1. Crucially, they have
real dimension equal to t, the top degree of cohomology to which RACARs for G contribute.
This ‘magical numerology’ allows one to integrate degree t compactly supported cohomology
classes against automorphic cycles, and we make this integration theory precise, with general
coefficients, in §4.2. In §4.3, we finally show that our constructions depend functorially on the
coefficient system, and track their dependence on the level of the automorphic cycles.

In §5 we will use this abstract theory with classical cohomology groups – those with coefficients
in V ∨

λ – to recover the evaluations of [38], and their connection to Deligne-critical L-values of
RASCARs. In §6 we use it to define distribution-valued evaluations on the overconvergent
cohomology groups Ht

c(SK ,DΩ), and hence to p-adically interpolate the evaluations of [38].
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4.1. Automorphic cycles.

Definition 4.1. Let LH ⊂ H(Af ) be an open compact subgroup. Define the automorphic cycle
of level LH to be the space

XLH
..= H(Q)\H(A)/LHL◦

∞,

where L∞ = H∞ ∩ K∞ for H∞ ..= H(R) (note all intersections are taken with respect to ι).
Note ZG(R) ∩H∞ ⊊ ZH(R), so this is not the locally symmetric space for H. This is denoted
S̃HLH

in [38], and is a real orbifold of dimension t [38, (23)].

We choose a specific LH , as in [38, §2.1]. Let K ⊂ G(Af ) be an open compact subgroup.

Definition 4.2. (i) Define a matrix ξ ∈ GL2n(AF ) by setting ξv = 1 for all v ∤ p and

ξp =
(
In wn
0 wn

)
∈ GL2n(OF,p)

for p|p, where wn is the antidiagonal n× n matrix whose (i, j)-th entry is δi,n−j+1.

(ii) For a multi-exponent β = (βp)p|p, with βp ∈ Z⩾0, we write

pβ =
∏

ϖ
βp
p and tβp =

∏
t
βp
p .

Fix an ideal m ⊂ OF prime to p. Then we define

Lβ = L(p)
∏
p|p

L
βp
p ,

where

(L1) away from p,
L(p) = {h ∈ H(Ẑ(p)) : h ≡ 1 (mod m)}

is the principal congruence subgroup of level m,

(L2) at p|p,
L
βp
p

..= H(Zp) ∩Kp ∩ ξpt
βp
p Kpt

−βp
p ξ−1

p .

Let Xβ
..= XLβ

be the automorphic cycle of level pβ .

The ideal m will always be fixed large enough so that

L(p) is contained in K(p) ∩H(Af ), and (4.1)

H(Q) ∩ hLβL◦
∞h

−1 = ZG(Q) ∩ LβL◦
∞ for all h ∈ H(A). (4.2)

By (4.2), Xβ is a real manifold [38, (21)]. Changing m will scale all our constructions of p-
adic L-functions by a fixed non-zero rational scalar (captured in the volume constant γpm of
Theorem 5.22 below); but each construction is only well-defined up to scaling the choice of
periods Ωϵπ, so changing m yields no loss in generality. We fix m to be the minimal such choice,
dropping it from all notation.

By definition of Lβp
p and (4.1), there is a proper map (see [6, Lemma 2.7])

ιβ : Xβ −→ SK , [h] 7−→ [ι(h)ξtβp ]. (4.3)

The cycle Xβ decomposes into connected components [38, (22)] indexed by

π0(Xβ) ..= Cℓ+
F (pβm)× Cℓ+

F (m), (4.4)
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where the component of [(h1, h2)] ∈ SK is given by the class

[(det(h1)/ det(h2), det(h2))] ∈ π0(Xβ).

For δ ∈ H(Af ), we write [δ] for its associated class in π0(Xβ) and denote the corresponding
connected component

Xβ [δ] ..= H(Q)\H(Q)δLβH◦
∞/LβL

◦
∞.

Remark 4.3. We give some motivation for these definitions.
First, note that we must use the coverings of locally symmetric spaces for H – not the locally

symmetric spaces themselves – as the map ι : H → G does not induce a well-defined map on
the true locally symmetric spaces. Indeed, the image of the centre Z◦

H(R) under ι does not land
in Z◦

G(R); hence the need to quotient instead by (ZG ∩ H)◦(R). Also, unlike the true locally
symmetric spaces, this covering also has the correct dimension t, making the ‘magic numerology’
work for defining evaluation maps.

Second, the twisting matrix ξ is of paramount importance to our constructions. It will be
essential in proving compatibility of evaluation maps as we vary the level β, and thus to p-adic
interpolation (most notably in Proposition 6.12, via Lemma 6.2). Moreover, it plays a crucial
role in the evaluation of local zeta integrals at p (see Proposition 5.12 [38, Prop. 3.4]). Whilst we
do not make this explicit, underlying our later proof of p-adic interpolation is the following fact:
ξ is an open orbit representative for the spherical pair H ⊂ G, in the sense that B−(Zp)ξH(Zp)
is Zariski-dense in G(Zp).

4.2. Abstract evaluation maps. We axiomatise the evaluation maps of [38]. Let K ⊂
G(Af ) be open compact such that NQ(Op) ⊂ Kp ⊂ Jp for p|p, and recall ∆p from §3.3. Let M
be a left ∆p-module, with action denoted ∗. Then K acts on M via its projection to Kp ⊂ ∆p,
giving a local system M on SK via §2.3.2.

4.2.1. Pulling back to cycles. We first pull back under ιβ . As in [38, §2.2.2], there is a twisting
map of local systems

τ◦
β : ι∗βM −→ ι∗M

(h,m) 7−→ (h, ξtβp ∗m)

where ι∗M is the local system given by locally constant sections of

H(Q)\(H(A)×M)/LβL◦
∞ → Xβ , ζ(h,m)ℓz = (ζhℓz, ℓ−1 ∗m). (4.5)

On cohomology we get a map

τ◦
β ◦ ι∗β : Ht

c(SK ,M ) −→ Ht
c(Xβ , ι

∗
βM ) −→ Ht

c(Xβ , ι
∗M ).

4.2.2. Passing to components. We trivialise ι∗M by passing to connected components. Let
δ ∈ H(Af ) represent [δ] ∈ π0(Xβ). Define XH ..= H◦

∞/L
◦
∞. The congruence subgroup

Γβ,δ ..= H(Q) ∩ δLβH◦
∞δ

−1 (4.6)
⊂ H(Q)+ ..= {(h1, h2) ∈ H(Q) : det(hi) ∈ O×

F ∩ F
×◦
∞ }

acts on XH (by left translation by its embedding into H◦
∞). Further if γ ∈ Γβ,δ then (δ−1γδ)f ∈

Lβ , so Γβ,δ acts on M via
γ ∗Γβ,δ

m ..= (δ−1γδ)f ∗m. (4.7)
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If [h∞] ∈ XH , write [h∞]δ for its image in Γβ,δ\XH . We have a map

cδ : H◦
∞ −→ H(A)
h∞ 7−→ δh∞,

which induces a map

cδ : Γβ,δ\XH ∼−→ Xβ [δ] ⊂ Xβ ,

[h∞]δ 7−→ [δh∞],

also denoted cδ. Pulling back gives a map of local systems c∗
δ : ι∗M → c∗

δι
∗M .

Lemma 4.4. The local system c∗
δι

∗M on Γβ,δ\XH is given by locally constant sections of

Γβ,δ\[XH ×M ] −→ Γβ,δ\XH , (4.8)

with action γ([h∞],m) = ([γ∞h∞], γ ∗Γβ,δ
m). The map c∗

δ of local systems is induced by the map

c∗
δ : H(Q)\

[
H(Q)δLβH◦

∞ ×M
]
/LβL

◦
∞ −→ Γβ,δ\[XH ×M ],

(ζδℓh∞,m) 7−→ ([h∞], ℓ ∗m).

Proof. In H(Q)\[H(Q)δLβH◦
∞ ×M ]/LβL◦

∞, we have

(ζδℓh∞,m) = ζ(δh∞, ℓ ∗m)ℓ = (cδ(h∞), ℓ ∗m),

so the map is as claimed. To see c∗
δι

∗M is given by (4.8), let γ ∈ Γβ,δ; then γf = δℓδ−1 for some
ℓ ∈ Lβ , and γ ∗Γβ,δ

m = ℓ ∗m by definition. In H(Q)\[H(Q)δLβH◦
∞ ×M ]/LβL◦

∞ we have

γ(δh∞,m) = (γfγ∞δh∞,m) = (δℓ · γ∞h∞,m) = (δγ∞h∞, ℓ ∗m).

Thus
γ([h∞],m)

=

γ(δh∞,m)�c∗
δoo

=

([γ∞h∞], γ ∗Γβ,δ
m) (δγ∞h∞, γ ∗Γβ,δ

m)�c∗
δoo

commutes, from which we deduce the action must be by (4.8).

4.2.3. Trivialising and integration over a fundamental class. Let

MΓβ,δ
..= M/{m− γ ∗Γβ,δ

m : m ∈M,γ ∈ Γβ,δ}

be the coinvariants of M by Γβ,δ. Since Γβ,δ acts trivially on MΓβ,δ
, the quotient M →MΓβ,δ

,
m 7→ (m)δ induces a trivialisation map (over Γβ,δ\XH)

coinvβ,δ : Γβ,δ\[XH ×M ] −→ [Γβ,δ\XH ]×MΓβ,δ
,

([h∞],m) 7−→ ([h∞]δ, (m)δ),

and thus a map from c∗
δι

∗M to the trivial local system attached to MΓβ,δ
on Γβ,δ\XH . We get

coinvβ,δ : Ht
c(Γβ,δ\XH , c∗

δι
∗M )→ Ht

c(Γβ,δ\XH ,Z)⊗MΓβ,δ
.

Finally, we integrate over a fundamental class in the Borel–Moore homology HBM
t (Γβ,δ\XH ,Z).

In [38, §2.2.5], a class
θ[δ] ∈ HBM

t (Xβ [δ],Z) ∼= Z
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is chosen for each class [δ], and we take

θδ ..= c∗
δ(θ[δ]).

Cap product
(− ∩ θδ) : Ht

c(Γβ,δ\XH ,Z) ∼−→ Z

induces an isomorphism

(− ∩ θδ) : Ht
c(Γβ,δ\XH ,Z)⊗MΓβ,δ

∼−→MΓβ,δ
, (ϕ,m) 7−→ (ϕ ∩ θδ,m).

Definition 4.5. Define the evaluation map of level pβ to be the composition

EvMβ,δ : Ht
c(SK ,M )

τ◦
β ◦ι∗β−−−−−→ Ht

c(Xβ ,ι
∗M ) c∗

δ−→ Ht
c(Γβ,δ\XH , c∗

δι
∗M ) (4.9)

coinvβ,δ−−−−−→ Ht
c(Γβ,δ\XH ,Z)⊗MΓβ,δ

−∩θδ−−−→∼ MΓβ,δ
.

4.3. Variation of M , δ and β.

4.3.1. Variation in M . The functoriality in M is the object of the following statement.

Lemma 4.6. Let κ : M → N be a map of ∆p-modules. There is a commutative diagram

Ht
c(SK ,M )

EvM
β,δ //

κ
��

MΓβ,δ

κ
��

Ht
c(SK ,N )

EvN
β,δ // NΓβ,δ

.

Proof. Writing out the definitions, it is immediate that κ induces a map on cohomology and a
map on coinvariants, and κ commutes with each of the maps in (4.9) (compare [11, Lem. 3.2]).

4.3.2. Variation in δ. We now investigate the dependence of the map EvMβ,δ on the choice of δ
representing [δ]. The main result of §4.3.2 is Proposition 4.9, where we define modified evaluation
maps independent of this choice in a special case.

For fixed δ, the action of ℓ ∈ Lβ need not preserve MΓβ,δ
. Nevertheless:

Lemma 4.7. Let δ ∈ H(A) and ℓ ∈ Lβ. If δ′ = ζδℓh∞ ∈ H(Q)δℓH◦
∞ ∩ H(Af ) is another

representative of δ, then:

(i) The action of ℓ on M induces a map

MΓβ,δ′ −→MΓβ,δ
,

(m)δ′ 7−→ ℓ ∗ (m)δ′ ..= (ℓ ∗m)δ.

(ii) There is a well-defined map

[ζ−1
∞ −] : Γβ,δ′\XH → Γβ,δ\XH

induced by
[h∞]δ′ 7→ [ζ−1

∞ h∞]δ.
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Proof. (i) It suffices to check {m′ − γ′ ∗Γβ,δ′ m
′ : m′ ∈ M,γ′ ∈ Γβ,δ′} is mapped by ℓ ∗ − to

{m− γ ∗Γβ,δ
m : m ∈M,γ ∈ Γβ,δ}. If γ′ ∈ Γβ,δ′ and m′ ∈M , then

ℓ ∗ [m′ − γ′ ∗Γβ,δ′ m
′] = [ℓ ∗m′]− [(ℓ(δ′)−1γ′δ′)f ∗m′]

= [ℓ ∗m′]− (h−1
∞ δ−1ζ−1γ′ζδh∞)f ∗ [ℓ ∗m′]

= m− (δ−1γδ)f ∗m = m− γ ∗Γβ,δ
m,

where m ..= ℓ ∗m′ ∈ M and γ ..= ζ−1γ′ζ. Note that γ ∈ H(Q), as ζ, γ′ ∈ H(Q); that γ∞ is in
H◦

∞, since it has positive determinant; and that γf ∈ δLβδ−1 by construction. Thus γ ∈ Γβ,δ.
(ii) The computation above shows

ζ−1Γβ,δ′ζ = Γβ,δ.

If [h∞]δ′ = [h′
∞]δ′ then [h∞] = γ′[h′

∞] for some γ′ ∈ Γβ,δ′ ; then

[ζ−1
∞ h∞] = ζ−1γ′[h′

∞] = (ζ−1γ′ζ)[ζ−1
∞ h′

∞],

so
[ζ−1

∞ h∞]δ = [ζ−1
∞ h′

∞]δ.

Combining Lemma 4.4 with coinvariants, the composed map of local systems is induced by

coinvβ,δ ◦ c∗
δ : H(Q)\

[
H(Q)δLβH◦

∞ ×M
]
/LβL

◦
∞ −→ Γβ,δ\XH ×MΓβ,δ

, (4.10)
(ζδℓh∞,m) 7−→ ([h∞]δ, (ℓ ∗m)δ).

Lemma 4.8. Let δ′ ∈ H(Q)δℓH◦
∞ ∩H(Af ) be another representative of [δ], with ℓ ∈ Lβ. Then

for any class ϕ, we have
ℓ ∗ EvMβ,δ′(ϕ) = EvMβ,δ(ϕ) ∈MΓβ,δ

.

Proof. Write δ′ = ζδℓh∞ with ζ ∈ H(Q), h∞ ∈ H◦
∞. By Lemma 4.7, we may define a map

([ζ−1
∞ −]× [ℓ ∗ −]) : Γβ,δ′\XH ×MΓβ,δ′ −→ Γβ,δ\XH ×MΓβ,δ

given by ([h∞]δ′ , (m)δ′) 7→ ([ζ−1
∞ h∞]δ, (ℓ ∗m)δ). We claim there is an equality of maps

([ζ−1
∞ −]× [ℓ ∗ −]) ◦ [coinvβ,δ′ ◦ c∗

δ′ ] = [coinvβ,δ ◦ c∗
δ ]. (4.11)

To see this, note that as δ and δ′ are both trivial at infinity, h∞ = ζ−1
∞ , so [h∞h

′
∞]δ =

[ζ−1
∞ −]([h′

∞]δ′) for all h′
∞ ∈ H◦

∞. Then (4.11) follows from commutativity of

(γ′δ′ℓ′h′
∞,m) �

coinvβ,δ′ ◦c∗
δ′ //

_

id
��

([h′
∞]δ′ , (ℓ′ ∗m)δ′)

_

[ζ−1
∞ −]×[ℓ∗−]
��

∈ Γβ,δ′\XH ×MΓβ,δ′

[ζ−1
∞ −]×[ℓ∗−]
��

(γ′ζδℓℓ′h∞h
′
∞,m) �

coinvβ,δ◦c∗
δ // ([h∞h

′
∞]δ, (ℓℓ′ ∗m)δ) ∈ Γβ,δ\XH ×MΓβ,δ

Note pullback by [ζ−1
∞ −] induces an isomorphism

HBM
t (Γβ,δ\XH ,Z) ∼−→ HBM

t (Γβ,δ′\XH ,Z)

that by definition sends θδ to θδ′ . In particular, on cohomology we get a commutative diagram

Ht
c(Γβ,δ′\XH ,Z) ∼

[ζ−1
∞ −]∗ //

−∩θδ′

∼

((

Ht
c(Γβ,δ\XH ,Z)

−∩θδ

∼
vvZ

. (4.12)
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Then we compute that

ℓ ∗ [EvMβ,δ′(ϕ)] = ℓ ∗ [(− ∩ θδ′) ◦ coinvβ,δ′ ◦ c∗
δ′ ◦ τ◦

β ◦ ι∗β(ϕ)]
= (− ∩ θδ) ◦ ([ζ−1

∞ −]∗ × [ℓ ∗ −]) ◦ coinvβ,δ′ ◦ c∗
δ′ ◦ τ◦

β ◦ ι∗β(ϕ)]
= (− ∩ θδ) ◦ coinvβ,δ ◦ c∗

δ ◦ τ◦
β ◦ ι∗β(ϕ) = EvMβ,δ(ϕ),

where the second equality is (4.12) and the third is (4.11) combined with (4.10).

Proposition 4.9. Let N be a left H(A)-module, with action denoted ∗, such that H(Q) and
H◦

∞ act trivially. Let κ : M → N be a map of Lβ-modules (with N an Lβ-module by restriction).
Then

EvM,κ
β,[δ]

..= δ ∗
[
κ ◦ EvMβ,δ

]
: Ht

c(SK ,M ) −→ N

is well-defined and independent of the representative δ of [δ].

Proof. As Γβ,δ ⊂ H(Q) acts trivially on N , κ factors through M ↠ MΓβ,δ
→ N , so κ ◦ EvMβ,δ

(hence EvM,κ
β,[δ]) is well-defined. If

δ′ = ζδℓh∞ ∈ H(Q)δℓH◦
∞ ∩H(Af ),

then

EvM,κ
β,[δ′] = δ′ ∗

(
κ ◦ EvMβ,δ′

)
= δℓ ∗

(
κ ◦ EvMβ,δ′

)
= δℓ ∗

(
κ ◦
[
ℓ−1 ∗ EvMβ,δ

])
= δ ∗

(
κ ◦ EvMβ,δ

)
= EvM,κ

β,[δ].

In the second equality we use that ζ and h∞ act trivially on N , and the third is Lemma 4.8.

4.3.3. Variation in β. We now investigate how evaluation maps behave as β = (βq)q|p varies.
Fix p|p, and define β′ = (β′

q)q|p, where β′
p = βp + 1 and β′

q = βq for q ̸= p. We have a natural
projection

prβ,p : Xβ′ −→ Xβ ,

inducing a projection
prβ,p : π0(Xβ′)→ π0(Xβ).

Fix δ ∈ H(Af ) and a set of representatives D ⊂ H(Af ) of the set pr−1
β,p([δ]) ⊂ π0(Xβ′). For

each η ∈ D there exists ℓη ∈ Lβ such that η ∈ H(Q)δℓηH◦
∞. Via calculations directly analogous

to those of Lemma 4.7, there is a map

MΓβ′,η
→MΓβ,δ

, (m)η 7→ ℓη ∗ (m)η ..= (ℓη ∗m)δ.

The action of tp ∈ ∆p yields an action of U◦
p on Ht

c(SK ,M ). Then we have the following direct
generalisation of [38, Thm. 2.2] to general coefficients (cf. [11, Prop. 3.9]):

Proposition 4.10. In the notation of the previous paragraph:

(i) For each class Φ ∈ Ht
c(SK ,M ), we have[

EvMβ,δ ◦ U◦
p

]
(Φ) =

∑
η∈D

ℓη ∗ EvMβ′,η(Φ).

(ii) Let N and κ be as in Proposition 4.9. If βp ⩾ 1, then as maps Ht
c(SK ,M )→ N we have∑

[η]∈pr−1
β,p

([δ])

EvM,κ
β′,[η] = EvM,κ

β,[δ] ◦ U
◦
p .

34



p-adic L-functions in Shalika families Barrera Salazar, Dimitrov and Williams

Proof. We follow closely the proof of [11, Proposition 3.4]. We recall the definition of U◦
p from

§2.3.3 (and fix simpler notation in this case). Recall tp = ι(ϖpIn, In), considered in G(Af ) by
taking 1 in the components outside p. Let

K0(p) = K ∩ t−1
p Ktp and K0(p) = tpKt

−1
p ∩K,

and denote the corresponding projections

pr1 : SK0(p) → SK and pr2 : SK0(p) → SK .

The action of tp on M induces a morphism

[tp] : Ht
c(SK0(p),M )→ Ht

c(SK0(p),M ),

induced by the map (g,m) 7→ (gt−1
p , tp ∗m) on local systems, and then by definition we have

U◦
p = Tr(pr2) ◦ [tp] ◦ pr∗

1 : Ht
c(SK ,M )→ Ht

c(SK ,M ).

We give an analogue over automorphic cycles. Following the definition of U◦
p we introduce maps

ι0β : Xβ′ −→ SK0(p), [h] 7−→ [ι(h)ξtβp ],
ιβ′,0 : Xβ′ −→ SK0(p), [h] 7−→ [ι(h)ξtβ

′

p ],

which by definition fit into a commutative diagram

SK SK0(p)oo SK0(p) //
· t−1

poo SK

Xβ

ιβ

OO

Xβ′

ιβ′,0

OO

prβ,p

oo
ι0β

gg

ιβ′
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.

(4.13)

Note that the left-hand quadrilateral is Cartesian.
The action of tp on M induces a morphism ι∗β′,0M → (ι0β)∗M of sheaves over Xβ′ , giving a

map
[tp] : Ht

c(Xβ′ , ι∗β′,0M )→ Ht
c(Xβ′ , (ι0β)∗M ).

Now define the analogue of U◦
p on the cohomology of the automorphic cycles by

U◦
p = Tr(prβ,p) ◦ [tp] : Ht

c(Xβ′ , ι∗β′M ) = Ht
c(Xβ′ , ι∗β′,0M )→ Ht

c(Xβ , ι
∗
βM )

From (4.13), the definition of U◦
p , and the fact that βp > 0, we get another commutative diagram

Ht
c(SK ,M )

U◦
p //

ι∗
β′
��

Ht
c(SK ,M )

ι∗β
��

Ht
c(Xβ′ , ι∗β′M )

U◦
p // Ht

c(Xβ , ι
∗
βM ).

Tracing back each step of the construction of the evaluation maps, and using Lemma 4.8 in the
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bottom square, we obtain the following commutative diagram, completing the proof of (i):

Ht
c(Xβ′ , ι∗β′M )

τ◦
β′
��

U◦
p // Ht

c(Xβ , ι
∗
βM )

τ◦
β

��
Ht

c(Xβ′ , ι∗M )
⊕ηc

∗
η

��

Tr(prβ,p)
// Ht

c(Xβ , ι
∗M )
c∗

δ

��
⊕η∈DHt

c(Xβ′ [η], c∗
ηι

∗M )
Tr(prβ,p)

//

⊕η(−∩θη)◦coinvβ′,η

��

Ht
c(Xβ [δ], c∗

δι
∗M )

(−∩θδ)◦coinvβ,δ

��
⊕η∈DMΓβ,η

∑
η∈D

(ℓη∗−)
// MΓβ,δ

.

Finally (ii) follows from (i) directly following the proof of Proposition 4.9.

5. Classical evaluation maps and L-values

Let K ⊂ G(Af ) be an open compact subgroup as in §4.2. Now we take M = V ∨
λ (L), with ∆p

acting via the ∗-action defined in §3.3. We now rephrase the classical evaluation maps

Ej,wβ,δ : Ht
c(SK ,V ∨

λ (L))→ L ⊂ Qp

of [38, §2.2] in the language of §4. We give two main applications of these classical evaluation
maps: firstly, they provide a criterion for the existence of a Shalika model (Proposition 5.15);
and when such a model exists and K = K(π̃), they compute classical L-values (Theorem 5.22).

We use an opposite convention to [38]. They take π to have weight λ∨ and use coefficients in
Vλ. Our choices mean we replace w from ibid. with −w, and µ∨ ibid. with λ.

5.1. Classical evaluation maps. We recap [38, §2.2]. The p-adic cyclotomic character is

χcyc : F×\A×
F −→ Z×

p (5.1)

y 7−→ sgn(y∞) · |yf | ·NF/Q(yp) ..=
∏
σ∈Σ

sgn(yσ) · |yf | ·
∏
p|p

NFp/Qp
(yp).

This is the p-adic character associated to the adelic norm (e.g. [16, §2.2.2]), and is trivial on
F×◦

∞ .

Definition 5.1. For (j1, j2) ∈ Z2, let V H(j1,j2) be a 1-dimensional L-vector space with H(A)-
action

(h1, h2) ∗ v ..= χcyc
[

det(h1)j1 det(h2)j2
]
v,

for h1, h2 ∈ GLn(AF ) and v ∈ V H(j1,j2). This is the set of L-points of the algebraic representation
of H of highest weight (j1, ..., j1, j2, ..., j2). Note that H(Q) and H◦

∞ act trivially on V H(j1,j2). For
(ℓ1, ℓ2) ∈ Lβ , as |det(ℓi)f | = 1, we have

(ℓ1, ℓ2) ∗ v ..= NF/Q
[

det(ℓ1,p)j1 det(ℓ2,p)j2
]
v.

The following branching law for H ⊂ G gives a representation-theoretic description of Crit(λ).

Lemma 5.2. Let j ∈ Z. We have j ∈ Crit(λ) if and only if

dimL(HomH(Zp)(V ∨
λ , V

H
(j,−w−j))) = 1.

(Note that since the ∗- and ·-actions of H(Zp) on V ∨
λ coincide, there is no ambiguity here).
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Proof. By [45, Prop. 6.3], we know 0 ∈ Crit(λ) if and only if

dimL(HomH(Zp)(V ∨
λ , V

H
(0,−w))) = 1.

Note L(π, j + 1
2 ) is critical if and only if L(π ⊗ | · |j , 1

2 ) is critical. Let

λ̃ = λ+ j(1, ..., 1),

of purity weight w + 2j; then j ∈ Crit(λ) if and only if 0 ∈ Crit(λ̃), and in this case

1 = dimL(HomH(Zp)(V ∨
λ̃
, V H(0,−w−2j))

= dimL(HomH(Zp)(V ∨
λ , V

H
(j,−w−j))).

Recall the map
τ◦
β ◦ ι∗β : Ht

c(SK ,V ∨
λ )→ Ht

c(Xβ , ι
∗V ∨

λ )

from §4.2. For j ∈ Crit(λ), fix a basis κλ,j of HomH(Zp)(V ∨
λ , V

H
(j,−w−j)). This induces a homo-

morphism
κλ,j : Ht

c(Xβ , ι
∗V ∨

λ ) −→ Ht
c(Xβ ,V

H
(j,−w−j)),

where V H
(j,−w−j) is the local system defined as in §2.3.2. Let δ ∈ H(Af ). As in §4.2, applying

(− ∩ θδ) ◦ coinvβ,δ ◦ c∗
δ and choosing a basis uj of V H(j,−w−j) gives a map

Ht
c(Xβ ,V

H
(j,−w−j))

coinvβ,δ◦c∗
δ−−−−−−−−→ Ht

c(Γβ,δ\XH ,Z)⊗ V H(j,−w−j)
(−∩θδ)⊗id−−−−−−−−→∼ V H(j,−w−j)

∼= L.

Then in [38, (33)], the authors define

Ej,wβ,δ ..= (− ∩ θδ) ◦ coinvβ,δ ◦ c∗
δ ◦ (κλ,j)∗ ◦ τ◦

β ◦ ι∗β .

The choice of basis uj of V H(j,−w−j) identifies V H(j,−w−j) with L, and we get a map κ◦
λ,j of H(Zp)-

modules defined via

κ◦
λ,j : V ∨

λ (L) −→ L, κλ,j(µ) = κ◦
λ,j(µ) · uj for all µ ∈ V ∨

λ (L). (5.2)

As Γβ,δ acts trivially on V H(j,−w−j), κλ,j and κ◦
λ,j factor through (V ∨

λ (L))Γβ,δ
. It is easy to see that

κλ,j commutes with restricting to components, passing to coinvariants, and integrating against
the fundamental class. We deduce the following description of Ej,wβ,δ via §4.2:

Lemma 5.3. We have Ej,wβ,δ = κ◦
λ,j ◦ EvV

∨
λ

β,δ .

Recall from [38, (33)] the map

Ej,wβ,[δ]
..= δ ∗ Ej,wβ,δ = χcyc

(
det(δj1δ

−w−j
2 )

)
Ej,wβ,δ ,

is independent of the representative δ of [δ] ∈ π0(Xβ). This also follows from Propositions 4.9,4.10.

Recall
π0(Xβ) = Cℓ+

F (pβm)× Cℓ+
F (m)

from (4.4). Write pr1, pr2 for the projections of π0(Xβ) onto the first and second factors respec-
tively, and let prβ denote the natural composition

prβ : Cℓ+
F (pβm)× Cℓ+

F (m) pr1−−−→ Cℓ+
F (pβm) −→ Cℓ+

F (pβ). (5.3)
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Definition 5.4. Let η0 be any finite order character of Cℓ+
F (m), and x ∈ Cℓ+

F (pβ). Define an
η0-averaged evaluation map

Ej,η0
β,x : Ht

c(SK ,V ∨
λ (L))→ L

by
Ej,η0
β,x

..=
∑

[δ]∈pr−1
β

(x)

η−1
0
(
pr2([δ])

)
Ej,wβ,[δ].

In [38] this is denoted Ej,ηβ,x, where η = η0| · |w; as later w will vary whilst η0 will not, we continue
to use a superscript η0 instead of η throughout, with w implicit in the source.

Let χ be a finite order Hecke character of conductor (exactly) pβ′ , for β′ = (β′
p)p|p. Let

βp = max(β′
p, 1) and β = (βp)p|p. Then χ induces a character on Cℓ+

F (pβ). Let L(χ) be the
smallest extension of L containing χ(Cℓ+

F (pβ)). For j ∈ Crit(λ), define

Ej,η0
χ =

∑
x∈Cℓ+

F
(pβ)

χ(x) Ej,η0
β,x : Ht

c(SK ,V ∨
λ (L)) −→ L(χ), (5.4)

ϕ 7−→
∑

[δ]∈π0(Xβ)

χ
(
prβ([δ])

)
· η−1

0
(
pr2([δ])

)
·
(
δ ∗
[
κ◦
λ,j ◦ EvV

∨
λ

β,δ (ϕ)
])
.

Remark 5.5. Summarising, Ej,η0
χ is the composition

Ht
c(SK ,V ∨

λ )

⊕Ej,w
β,[δ]

%%

⊕Ej,η0
β,x

77

⊕Ev
V ∨

λ
β,δ //

⊕
[δ]

(V ∨
λ )Γβ,δ

v 7→δ∗κ◦
λ,j(v)

//
⊕
[δ]

L
⊕Ξη0

x //
⊕

x
L

ℓ7→Σχ(x)ℓx // L, (5.5)

where the sums are over [δ] ∈ π0(Xβ) or x ∈ Cℓ+
F (pβ), and Ξη0

x is the η0-averaging map

Ξη0
x : (m[δ])[δ] 7−→

∑
[δ]∈pr−1

β
(x)

η−1
0 (pr2([δ])) ·m[δ].

5.2. Compatible choices of bases: branching laws for H ⊂ G. Let j ∈ Crit(λ). The
map Ej,η0

χ depends on choices of bases

uj of V H(j,−w−j)
∼= L and κλ,j of HomH(Zp)(V ∨

λ (L), V H(j,−w−j)),

which we combined into a single choice of non-zero κ◦
λ,j in (5.2). At present, we have made a

separate, independent choice for each j. For p-adic interpolation it is essential to make all these
choices compatibly. We now do this via branching laws.

5.2.1. Idea: critical integers via branching laws. Dualising Lemma 5.2 gives a reinterpretation
of the set Crit(λ) in terms of branching laws for H ⊂ G, describing characters of H that appear
in Vλ|H with multiplicity 1. For each j ∈ Crit(λ), we obtain a line V H(−j,w+j) ⊂ Vλ|H . Our key
idea for p-adic interpolation is to reinterpret this again in terms of smaller groups; instead of
considering branching laws for H ⊂ G, one can consider branching laws for Gn = ResOF /Z GLn ⊂
H, embedded diagonally. Indeed, recall λ is pure with purity weight w, and V Hλ is the irreducible
representation of H of highest weight λ; then as Gn-representations we have

V Hλ |Gn
∼= V Gn

λ′ ⊗ V Gn

λ′′ (5.6)
∼= V Gn

λ′ ⊗ (V Gn

λ′ )∨ ⊗ (NF/Q ◦ det)w,
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recalling λ′ = (λ1, . . . , λn) and λ′′ = (λn+1, . . . , λ2n). As V Gn

λ′ ⊗ (V Gn

λ′ )∨ contains the trivial
representation with multiplicity 1, V Hλ |Gn

contains (NF/Q◦det)w with multiplicity 1. In Notation
5.6 and Lemmas 5.7 and 5.8, we show that the #Crit(λ) different lines V H(−j,w+j) in Vλ|H (given
by Lemma 5.2) can all be collapsed onto this single line in V Hλ |Gn

. Choosing a generator of this
single line thus allows us to align generators of the distinct lines V H(−j,w+j) for j ∈ Crit(λ).

5.2.2. Passing from H ⊂ G to Gn ⊂ H. Let j ∈ Crit(λ), and

κλ,j ∈ HomH(Zp)(V ∨
λ (L), V H(j,−w−j))

and
uj ∈ V H(j,−w−j)

be auxiliary bases. We have a dual basis

u∨
j of V H(−j,w+j)

∼= (V H(j,−w−j))∨.

Dualising κλ,j gives a map

κ∨
λ,j : V H(−j,w+j) −→ (V ∨

λ (L))∨ ∼= Vλ(L)

of H(Zp)-modules. Then κ∨
λ,j(u∨

j ) ∈ Vλ(L) generates the unique H(Zp)-submodule isomorphic
to V H(−j,w+j) inside Vλ(L)|H(Zp).

Notation 5.6. Viewing κ∨
λ,j(u∨

j ) ∈ Vλ(L) as an element of IndG(Zp)
Q−(Zp)V

H
λ (L) by Lemma 3.6, let

vHλ,j
..= κ∨

λ,j(u∨
j )
[(
In In

0 In

)]
∈ V Hλ (L).

Let
N×
Q (Zp) ..= {( 1 X

0 1 ) ∈ NQ(Zp) : X ∈ Gn(Zp)} ⊂ NQ(Zp).

Lemma 5.7. (i) For each ( 1 X
0 1 ) ∈ N×

Q (Zp), we have

κ∨
λ,j(u∨

j ) [( 1 X
0 1 )] =

[
NF/Q ◦ det(X)]j

(
⟨(X 1 )⟩λ · v

H
λ,j

)
.

(ii) The vector vHλ,j ∈ V Hλ (L) is non-zero.

Proof. (i) For ( 1 X
0 1 ) ∈ N×

Q (Zp), we have

κ∨
λ,j(u∨

j ) [( 1 X
0 1 )] = κ∨

λ,j(u∨
j )
[
(X 1 ) ( 1 1

0 1 )
(
X−1

1
)]

= ⟨(X 1 )⟩λ ·
(
κ∨
λ,j(u∨

j )
[

( 1 1
0 1 )

(
X−1

1
) ])

,

where the last equality follows by (3.2). Moreover,
(
X−1

1
)
∈ H(Zp) ⊂ G(Zp) acts on κ∨

λ,j(u∨
j )

by right translation, and κ∨
λ,j is H(Zp)-equivariant, whence we see

κ∨
λ,j(u∨

j )
[
( 1 1

0 1 )
(
X−1

1
)]

=
((

X−1

1
)
· κ∨

λ,j(u∨
j )
)

[( 1 1
0 1 )]

= κ∨
λ,j

( (
X−1

1
)
· u∨

j

)
[( 1 1

0 1 )]
= (NF/Q ◦ det(X))j · κ∨

λ,j(u∨
j ) [( 1 1

0 1 )]
= (NF/Q ◦ det(X))j · vHλ,j ,

using that u∨
j ∈ V H(−j,w+j). Combining these equalities proves (i).
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(ii) Suppose vHλ,j = 0. By (i), we see

κ∨
λ,j(u∨

j )|N×
Q

(Zp) = 0.

Since N×
Q (Zp) is Zariski-dense in NQ(Zp), we deduce κ∨

λ,j(u∨
j ) vanishes on NQ(Zp), hence on Jp

by the parahoric decomposition; but by Zariski-density of Jp ⊂ G(Zp) this forces κ∨
λ,j(u∨

j ) = 0.
This is absurd by its definition.

Alternative choices of κλ,j or uj scale vHλ,j by L×-multiple. As vHλ,j is non-zero, we see choosing
κλ,j and uj is equivalent to fixing a basis of the line L · vHλ,j . This line is independent of j:

Lemma 5.8. (i) Let h ∈ Gn(Zp). Then〈(
h
h

)〉
λ
· vHλ,j = (NF/Q ◦ det(h))w vHλ,j .

(ii) The line L · vHλ,j ⊂ V Hλ (L) is independent of j.

Proof. (i) By definition: ⟨·⟩λ acts on κ∨
λ,j(u∨

j ) by left translation; the ·-action of H(Zp) on
κ∨
λ,j(u∨

j ) is by right translation; and (h1, h2) ∈ H(Zp) acts on u∨
j by NF/Q(det(h1)−j det(h2)w+j).

Then 〈(
h
h

)〉
λ
· vHλ,j = κ∨

λ,j(u∨
j )
[(
h
h

)
( 1 1

0 1 )
]

= κ∨
λ,j(u∨

j )
[
( 1 1

0 1 )
(
h
h

)]
=
( (

h
h

)
· κ∨

λ,j(u∨
j )
)

[( 1 1
0 1 )]

= κ∨
λ,j

( (
h
h

)
· u∨

j

)
[( 1 1

0 1 )]
= (NF/Q ◦ det(h))wκ∨

λ,j(u∨
j ) [( 1 1

0 1 )]
= (NF/Q ◦ det(h))wvHλ,j .

In the first equality, we use the transformation law from (3.2) for κ∨
λ,j(u∨

j ) ∈ Vλ (via Lemma
3.6).

(ii) As after (5.6), the restriction V Hλ |Gn
contains (NF/Q ◦ det)w as a unique summand. This

summand visibly has no dependence on j, but by (i), for each j it coincides with L · vHλ,j .

Thus evaluation at ( 1 1
0 1 ) collapses all the lines V H(−j,w+j) ⊂ Vλ|H onto the same line in V Hλ |Gn .

5.2.3. From Gn ⊂ H back to H ⊂ G. We now use §5.2.2 to align our initial choices of κ◦
λ,j .

Notation 5.9. Fix a generator vHλ of (NF/Q ◦ det)w ⊂ V Hλ |Gn
. We take

vHλ ∈ V Hλ (OL)

optimally integrally normalised (in the sense that ϖ−1
L vHλ /∈ V Hλ (OL)).

Definition 5.10. Using Lemma 5.8(ii), rescale κλ,j and uj so that

vHλ,j = (−1)dnjvHλ .

Then let κ◦
λ,j : V ∨

λ (L) −→ L be the map determined by the property (5.2).

From the definitions, and using duality, we can describe κ◦
λ,j as the map

κ◦
λ,j : V ∨

λ (L) −→ L, (5.7)
µ 7−→ µ[κ∨

λ,j(u∨
j )].

now give an alternative description of κ◦
λ,j better suited to p-adic interpolation.
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Lemma 5.11. (i) For each j, there exists a unique

[vλ,j : G(Zp)→ V Hλ (L)] ∈ Vλ(L)

with
vλ,j [( 1 X

0 1 )] = (−1)dnj
[
NF/Q ◦ det(X)]j

(
⟨(X 1 )⟩λ · v

H
λ

)
(5.8)

for ( 1 X
0 1 ) ∈ N×

Q (Zp).

(ii) For (h1, h2) ∈ H(Zp), we have(
h1

h2

)
· vλ,j = NF/Q[det(h1)−j det(h2)w+j ]vλ,j .

(iii) The map
κ◦
λ,j : V ∨

λ (L) −→ L

from Definition 5.10 is given by µ 7→ µ(vλ,j).

Proof. (i) We take
vλ,j ..= κ∨

λ,j(u∨
j ).

Then (5.8) is exactly Lemma 5.7(i). Note the values of vλ,j on N−
Q (Zp)H(Zp)N×

Q (Zp) are deter-
mined by (5.8) and the transformation property of IndG(Zp)

Q−(Zp)V
H
λ (L); and this is Zariski-dense in

G(Zp). Hence vλ,j is unique with this property.
(ii) Since κ∨

λ,j is H(Zp)-equivariant and u∨
j ∈ V H(−j,w+j), we compute that(

h1
h2

)
· vλ,j = κ∨

λ,j

((
h1

h2

)
· u∨

j

)
= NF/Q[det(h1)−j det(h2)w+j ]vλ,j .

(iii) This follows directly from (5.7).

5.2.4. Comparison with previous work. In [38, (40)], the authors choose a lowest weight vector
v0 ∈ V ∨

λ (L), and use this choice and Lie theory to define an integral lattice

V ∨
λ (OL)DJR ⊂ V ∨

λ (L)

(which may be different from the lattice Vλ(OL) defined in §2.2). For j ∈ Crit(λ), they construct
a map

κDJR
j : V ∨

λ (OL)DJR → V H(j,−w−j)(OL) ∼= OL,

normalised so that κDJR
j (ξ · v0) = 1 (which they prove is possible in results analogous to §5.2.2).

This map is denoted κ◦
j ibid.

We freely identify κDJR
j with its scalar extension V ∨

λ (L) → L. By Lemma 5.2, for each
j ∈ Crit(λ) the maps κ◦

λ,j and κDJR
j agree up to L×-multiple. Fix j0 ∈ Crit(λ); we can align the

choice of v0 (and hence the integral structure V ∨
λ (OL)DJR) in [38] so that κ◦

λ,j0
= κDJR

j0
. Then:

Proposition 5.12. For each j ∈ Crit(λ), we have κ◦
λ,j = κDJR

j .

Proof. Dualising the map κDJR
j , and evaluating at 1 ∈ OL, one obtains an element

vDJR
j ∈ Vλ(OL)DJR such that κDJR

j (µ) = µ(vDJR
j ).

Moreover
vDJR
j ∈ V H(−j,w+j) ⊂ Vλ|H ,
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so vDJR
j is an L×-multiple of vλ,j from Lemma 5.11. In particular, there exists cj ∈ OL such

that either vλ,j = cjv
DJR
j or cjvλ,j = vDJR

j . We assume the latter; the proof is identical for the
former. By the above and Lemma 5.11(iii), it suffices to prove that cj = 1 for each j ∈ Crit(λ).
By assumption cj0 = 1.

By [38, Prop. 2.6], for all j ∈ Crit(λ), µ ∈ V ∨
λ (OL), and β ∈ Z⩾1, we have

µ[(ξ−1tβp ) ∗ vDJR
j ] ≡ µ[(ξ−1tβp ) ∗ vDJR

j0
] (mod pβOL).

As this holds for all µ, by considering OL-bases we deduce

(ξ−1tβp ) ∗
[
vDJR
j − vDJR

j0

]
∈ pβVλ(OL)DJR.

Any two integral lattices in Vλ(L) are commensurable, so there exists β0 ∈ Z⩾0 such that

(ξ−1tβp ) ∗
[
vDJR
j − vDJR

j0

]
∈ pβ−β0Vλ(OL),

for all β ⩾ β0, and in particular, our normalisations ensure we have

(ξ−1tβp ) ∗
[
cjvλ,j − vλ,j0

]
∈ pβ−β0Vλ(OL). (5.9)

Thus, considering this element in IndG(Zp)
Q−(Zp)V

H
λ (L) via Lemma 3.6, for all g ∈ G(Zp) we have

(ξ−1tβp ) ∗
[
cjvλ,j − vλ,j0

]
(g) ∈ pβ−β0V Hλ (OL). (5.10)

Recall vHλ ∈ L[H] (from Notation 5.9) is polynomial in the coordinates of H; after possibly
enlarging β0, we may assume that ϖβ0

L v
H
λ ∈ OL[H], that is, the coefficients are all integral.

As the action ⟨·⟩λ on vHλ is by right-translation, one deduces easily that if h, h′ ∈ H(Zp) with
h ≡ h′ (mod pβ), then

⟨h⟩λ ·ϖβ0
L v

H
λ ≡ ⟨h′⟩λ ·ϖβ0

L v
H
λ (mod pβV Hλ (OL)),

so
⟨h⟩λ · vHλ ≡ ⟨h′⟩λ · vHλ (mod pβ−β0V Hλ (OL)). (5.11)

Now, by §3.3 note the action of ξ−1tβp on Vλ is induced by the action

( 1 X
0 1 ) 7−→

[
tβp ( 1 X

0 1 ) t−βp
]
ξ−1 =

(
1 pβX
0 1

) ( 1 −1
0 wn

)
=
( 1

wn

) (
1 −1+pβXwn

0 1

)
(5.12)

on ( 1 X
0 1 ) ∈ N×

Q (Zp). In particular, we see

(ξ−1tβp ∗ vλ,j)[( 1 X
0 1 )] = ⟨

( 1
wn

)
⟩λvλ,j

((
1 −1+pβXwn

0 1

))
(by defn. and (5.12))

= (−1)dnj(NF/Q ◦ det(−1 + pβXwn))j
〈(

−1+pβXwn
wn

)〉
λ
· vHλ

≡
〈(−1

wn

)〉
λ
· vHλ (mod pβ−β0V Hλ (OL)) (by (5.11),

which is visibly independent of j. Substituting this into (5.10), we obtain

(cj − 1) ·
[ 〈(−1

wn

)〉
λ
· vHλ

]
∈ pβ−β0V Hλ (OL). (5.13)

As
⟨
(−1

wn

)
⟩λ · vHλ ̸= 0,

and this holds for all β ⩾ β0, we deduce cj = 1, completing the proof.
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In particular, all of our choices, and hence the maps Ej,η0
χ , coincide with those in [38], so we

may freely use the later results ibid. on the specific values of Ej,η0
χ .

Remark 5.13. Proposition 5.12 would fail without the scalar (−1)dnj in Definition 5.10. If we
had defined ξ =

( 1 −wn
0 wn

)
when defining EvMβ,δ, we would not need this scalar. However we choose

ξ =
( 1 wn

0 wn

)
, as chosen in [38], for compatibility with their results.

We now compare with the alignment of Jiang–Sun–Tian, who in [54] proved period relations
at infinity for RASCARs. They fix a highest weight vector v∞ ∈ V ∨

λ , let u =
( 1 −wn
wn 1

)
, and

normalise the branching law† κJST
j : V ∨

λ → V Hj,−w−j so that κJST
j (u · v∞) = 1. Again, note all the

κJST
j depend only on the choice of v∞, which is well-defined up to scalar. Then we have:

Proposition 5.14. We may choose v∞ such that

κ◦
λ,j = (detwn)jd · κJST

j

for each j ∈ Crit(λ).

Proof. By Proposition 5.12 it suffices to show κJST
j = (detwn)jd · κDJR

j . As both lie in the same
line, we know at least there exists Cj ̸= 0 such that κDJR

j = Cjκ
JST
j . We want Cj = (detwn)jd.

Note that
ξ =

( 1
wn

)
u
( 1 −wn

0 1
) ( 1n

−2−1·1n

)
w2n (5.14)

Note w2n ·v0 is a highest weight vector. Thus any t ∈ T acts on w2n ·v0 as λ∨(t), and any n ∈ N
acts trivially. Letting both sides of (5.14) act on v0 thus gives

ξ · v0 = λ∨
[(

1n

−2−1·1n

)] ( 1
wn

)
u · w2n · v0 = (detwn)wd ( 1

wn

)
u · v∞,

where we define v∞ ..= (detwn)−wdλ∨
[(

1n

−2−1·1n

)]
· w2n · v0. Then

1 = κDJR
j [ξ · v0] = det(wn)wdκDJR

j

[( 1
wn

)
u · v∞

]
= (detwn)−jdκDJR

j [u · v∞]
= (detwn)−jdCjκ

JST
j [u · v∞] = (detwn)−jdCj .

For this choice of v∞ we have Cj = (detwn)jd, as required.

5.3. Non-vanishing of evaluation maps and Shalika models. We now show how classical
evaluation maps can detect existence of Shalika models. Let π be any RACAR with attached
maximal ideal mπ ⊂ H′ as in §2.4. Let λ be the weight of π, with purity weight w.

Proposition 5.15. Suppose there exists ϕ ∈ Ht
c(SK ,V ∨

λ (Qp))ϵmπ
such that

Ej,η0
χ (ϕ) ̸= 0 (5.15)

for some χ, j and η0. Then π admits a global (η, ψ)-Shalika model, where η = η0| · |w.

Proof. By Proposition 2.3, there exists a unique φf ∈ πKf mapping to ϕ under (2.11). This
isomorphism depended on a choice Ξϵ∞ of generator of

Ht(g∞,K
◦
∞;π∞ ⊗ V ∨

λ (C))ϵ ⊂
[
∧t(g∞/t∞)∨ ⊗ π∞ ⊗ V ∨

λ (C)
]K◦

∞ ,

†To translate between this statement and ours here: observe that the torus defined in [54, (3.14)] is uTu−1,
where T is the usual torus; so the space they denote (F∨

K )uK is u·(V ∨
λ )N here. But the space (V ∨

λ )N of N -invariants
is the highest weight space, so their v0 is u · v∞ here.
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where t∞ = Lie(T∞) and the inclusion is [26, II.3.4] (see also [45, §4.1]). Fixing bases {ωi} of
(g∞/t∞)∨ and {eα} of V ∨

λ (C), there then exist unique vectors

φϵ∞,i,α ∈ π∞ such that Ξϵ∞ =
∑

i

∑
α

ωi ⊗ φϵ∞,i,α ⊗ eα,

where i ranges over tuples (i1, ..., it) and ωi = ωi1 ∧ · · · ∧ ωit . Define

φϵi,α
..= φϵ∞,i,α ⊗ φf .

By [38, Prop. 4.6], we see there exists an automorphic form

φϵϕ,j =
∑

i

∑
α

aϵi,α,j · φϵi,α ∈ π,

where the scalars aϵi,α,j ∈ C depend on κ◦
λ,j , and with i and α ranging over the same sets as

above, such that

i−1
p

[
Ej,wβ,[δ](ϕ)

]
= λ(tβp )

∫
Xβ [δ]

φϵϕ,j(hξtβp ) | det(hj1h
−w−j
2 )|F dh.

Now arguing exactly as in the proof of [38, Thm. 4.7], we have an equality

i−1
p

[
Ej,η0
χ (ϕ)

]
=
[
γpm · λ(tβp )

∏
p|p

NF/Q(p)n
2βp

]
·Ψ
(
j + 1

2 , φ
′, χ, η

)
, (5.16)

where

• γpm is a non-zero volume constant defined in [38, (77)],

• φ′ ..= (ξtβp ) · φϵϕ,j , and

• Ψ is the period integral defined in [41, Prop. 2.3].

Now, as in the proof of [41, Prop. 2.3], we may write

Ψ
(
j + 1

2 , φ
′, χ, η

)
(5.17)

=
∫
Zn(Q)\Zn(A)

[∫
H(Q)\H0

φ′ [( h1x
h2

)]
χ
(

deth1
deth2

)
η−1(deth2)dh

]
χ(x)| det(x)|jdx,

where Zn is the centre of ResF/Q GLn and

H0 = {(h1, h2) ∈ H(A) : | det(h1)| = |det(h2)| = 1}.

By (5.15), both (5.16) and (5.17) do not vanish; hence the inner integral of (5.17) also does not
vanish. But existence of such a φ′, χ and η implies π admits an (η, ψ)-Shalika model by [41,
Prop. 2.2].

5.4. Local zeta integrals. In this and the next section, we state and prove Theorem 5.22,
relating evaluation maps to L-values for our π̃. This is a compilation of results from [41, 45, 38,
54, 13]. First we relate to local zeta integrals in a general setting.

Let π be a RASCAR of G(A), and χ =
∏
χv a Hecke character of F of conductor pβ .

Recall ΘK,ϵ
ip

: Sηf

ψf
(πKf )→ Ht

c(SK ,V ∨
λ (Qp))ϵmπ

from (2.21), depending on a choice Ξϵ∞ at infinity.
Attached to Ξϵ∞ and j ∈ Crit(λ) is a ‘local zeta integral’ ζ∞,j(Ξϵ∞), the quantity P∞,j(Ξϵ∞) from
[54, (4.15)]. Recall the finite analogues ζv(−) from §2.6. Let

(χjcycχη)∞ = [(−1)jχσ(−1)ησ(−1)]σ∈Σ ∈ {±1}Σ.
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Lemma 5.16. Let Wf = ⊗vWv ∈ S
ηf

ψf
(πf ). If ϵ ̸= (χjcycχη)∞, then Ej,η0

χ (ΘK,ϵ
ip

(Wf )) = 0.
If ϵ = (χjcycχη)∞, then

i−1
p

(
Ej,η0
χ (ΘK,ϵ

ip
(Wf ))

)
=
[
γpm · λ(tβp )

∏
p|p

NF/Q(p)n
2βp

]
× ζ∞,j(Ξϵ∞) ·

∏
v∤p∞

ζv

(
j + 1/2;Wv, χv

)
·
∏
p|p

ζp

(
j + 1/2;Wp

(
− ·ξtβp

p

)
, χp

)
.

Proof. When ϵ ̸= (χjcycχη)∞, we deduce Ej,η0
χ (ϕϵπ̃) = 0 as in the proof of [38, Thm. 4.7].

Suppose the sign condition is satisfied. We start from (5.16) above, where φ′ = ξtβp ·φϵϕ,j in the
notation op. cit, with ϕ = ΘK

ip
(Wf ). Note Sηψ(φ′) = W ϵ

∞,j⊗ [ξtβp ·Wf ] for some W ϵ
∞,j ∈ S

η∞
ψ∞

(π∞).
Now [38, §4.1.2] shows that Ψ(j + 1/2, φ′, χ, η) equals the product of local zeta integrals, as
required.

5.4.1. Local zeta integrals at infinity. At infinity, the following is a combination of Sun [77,
Thm. 5.5], Jiang–Sun–Tian [54, Thm. 3.12], and Geng [42, Thm. 8.6].

Theorem 5.17. Up to rescaling the basis elements Ξϵ∞ ∈ Ht(g∞,K
◦
∞;π∞ ⊗ V ∨

λ (C))ϵ, if ϵ =
(χjcycχη)∞, we have

ζ∞,j(Ξϵ∞) = i−jnd · L(π∞ ⊗ χ∞, j + 1/2).

Proof. For each j ∈ Crit(λ), Jiang–Sun–Tian construct a zeta integral ζJST
∞,j (Ξϵ∞) at infinity, and

show it arises from an evaluation map/modular symbol process as above. Their main result is
existence of ε(π∞) =

∏
σ∈Σ ε(πσ) ∈ {±1} such that the quantity

ζJST
∞,j (Ξϵ∞)

i−jnd · L(π∞ × χ∞, j + 1/2) · ε(π∞)j (5.18)

is non-zero and independent of j when ϵ = (χjcycχη)∞. Further, in [42], Geng shows that
ε(πσ) = det(wn) for all σ, so ε(π∞)j = det(wn)jd.

The map ζJST
∞,j differs from ζ∞,j only in the choice of branching law, so by Proposition 5.14

ζ∞,j(Ξϵ∞) = det(wn)jd · ζJST
∞,j (Ξϵ∞). (5.19)

Combining (5.18) and (5.19), we see

ζ∞,j(Ξϵ∞)
i−jnd · L(π∞ × χ∞, j + 1/2) (5.20)

is non-zero and independent of j. Now note ζ∞,j(Ξϵ∞) scales linearly with Ξϵ∞; so by rescaling
the latter, we may assume (5.20) equals 1 for some j0, hence for all j, as required.

Definition 5.18. We let e∞(π, χ, j) ..= i−jnd · L(π∞ ⊗ χ∞, j + 1/2).

5.4.2. Local zeta integrals at p. Recall from §2.8 that we work in two local settings at p:

(C2)p πp is parahoric spherical admitting a Shalika model, π̃p = (πp, αp) is a ShalikaQ-refinement,
and Wp ∈ S

ηp
ψp

(πJpp )⟦Up − αp⟧ a generator.

(C2′)p πp = IndGBθp is spherical, satisfies the hypotheses of Proposition 2.7, and π̃p = (πp, αp) is
the Shalika Q-refinement from that result.

We will assume (C2)p throughout, and (C2′)p when considering unramified characters. For a
quasi-character χp of F×

p , let τ(χp) be the local Gauss sum, normalised as in [13, §9.2].
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Definition 5.19. Let s ∈ C. If χp is ramified of conductor pβp , let T (χp) = τ(χp)n and

e′
p(π̃, χ, s) ..= q

βpn
(
s+n

2 − 1
2
)

+δpn
(
s−n

2 − 1
2
)

p ·
qnp

(qp − 1)n .

This depends only on βp and s, but we denote it this way for later consistency.
If χp is unramified and (C2′)p holds, let T (χp) = χ(ϖp)−nδp and

e′
p(π̃, χ, s) ..= q

δpn
(
s−n

2 − 1
2
)

p ·
qnp

(qp − 1)n · αp ·
2n∏

i=n+1

1− θ−1
p,iχ

−1
p (ϖp)qs− 1

2
p

1− θp,iχp(ϖp)q−s− 1
2

p

.

Proposition 5.20. (D.–Januszewski–Raghuram; B.–D.–Graham–Jorza–W.).
Let Wp be a generator of Sηpψp

(
π
Jp
p

)⟦Up − αp⟧.

(i) If (C2)p holds, then for all ramified quasi-characters χp, we have

ζp
(
s;Wp(− · ξtβp

p ), χp

)
= T (χp) · e′

p(π̃, χ, s− 1
2 ) ·Wp(t−δpp ). (5.21)

(i) If (C2′)p holds, (5.21) also holds for unramified χp.

Proof. Given (C2)p, (i) is [38, Prop. 3.4] (with a corrected power of qp; see Appendix (2)).
If (C2′)p holds, (ii) was proved by the present authors with Graham and Jorza in [13, Prop.

9.3]. The only differences are that instead of ξ =
( 1 wn

0 wn

)
here, there is used u−1 =

( 1 −wn
0 1

)
; but

we can compare the two integrals by noting that the integrand in [13] contains

( h 1 )
( 1 −wn

0 1
) (

tβp
1

)
=
(−hwn

1
) ( 1 wn

0 wn

) (
tβp

1

) (−wn
wn

)
.

The change of variables h ↔ −hwn removes the factor of χp(det(−wn)) appearing in [13], and(−wn
wn

)
disappears by parahoric invariance. In [13] the term Wp(t−δpp ) is denoted F0(w2n)

and taken to be 1 (see §9.1 ibid.), so does not appear there. We also rearrange using αp =
q
n2/2
p θp,n+1 · · · θp,2n(ϖp).

Remark 5.21. Proposition 5.20(i) holds assuming only π̃p is regular, rather than Shalika (i.e.
without demanding that W (t−δp ) ̸= 0). In particular if π̃p is regular and ζp(s,Wp(−·ξtβp

p ), χp) ̸= 0
for some ramified χp, then this result implies π̃p is Shalika.

5.5. Cohomological interpretation of L-values. Now suppose π̃ satisfies Conditions 2.8
or 2.8′, and recall

ϕϵπ̃ = ΘK(π̃),ϵ
ip

(WFJ
f )
/
ip(Ωϵπ)

from Definition 2.10. It is important that we now work at level K = K(π̃). The results from
[41, 45, 38, 54, 13] combine to show:

Theorem 5.22. Suppose π̃ satisfies Conditions 2.8′. Fix ϵ ∈ {±1}Σ. Let χ be a finite order
Hecke character of conductor pβ′ , with β′ = (β′

p)p|p with each β′
p ⩾ 0. Let βp ..= max(β′

p, 1). Let
j ∈ Crit(λ). Then if ϵ ̸= (χjcycχη)∞, then Ej,η0

χ (ϕϵπ̃) = 0. If ϵ = (χjcycχη)∞, we have

i−1
p

(
Ej,η0
χ (ϕϵπ̃)

)
= γpm · λ(tβp ) ·NF/Q(d(p))jn · τ(χf )n

×
[∏

p|p e
′
p(π̃, χ, j)

]
· e∞(π, χ, j) ·

L(p)(π ⊗ χ, j + 1
2 )

Ωϵπ
.

If π̃ satisfies the (more general) Conditions 2.8 then the same is true when β′
p ⩾ 1 for all p|p.
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Here τ(χf ) is the Gauss sum, d(p) is the prime-to-p part of the different, and the e(−) terms
are as in Definitions 5.18 and 5.19 above.

Proof. By Lemma 5.16, we have vanishing unless the sign condition is satisfied, whence the left-
hand side is a product of local zeta integrals. The integral at infinity was computed in Theorem
5.17. At v ∤ p∞, the integral is ζv(j + 1/2,WFJ

v , χv), which was evaluated in (2.15). In the
product, we get the claimed L-value and NF/Q(d(p))jn, and a product of χv(ϖv)’s.

At p|p, if Conditions 2.8′ hold, then we are in case (C2′)p of Proposition 5.20, and this
computes the integral for all χp. If only Conditions 2.8 hold, then we are in case (C2)p and
Proposition 5.20 computes it whenever βp ⩾ 1.

The T (χp)’s combine with the products of χv(ϖv)’s at v ∤ p∞ to give τ(χf )n, as in [38, Thm.
4.7]. The L-factors combine into L(p)(−). The other terms are as claimed.

6. Finite slope p-adic L-functions

By a conjecture of Panchishkin [66], the p-adic L-function of π̃ is expected to be a p-adic distri-
bution on Galp, the Galois group of the maximal abelian extension of F unramified outside p∞,
satisfying growth and interpolation properties. We now use the formalism of §4 to construct eval-
uation maps on overconvergent cohomology groups, valued in the space of distributions on Galp,
and use them to give a construction of p-adic L-functions attached to non-Q-critical Q-refined
RACARs π̃ satisfying Conditions 2.8. We show these p-adic L-functions satisfy the required
growth and interpolation properties by using the results of §4.3 on the variation of evaluation
maps. In particular, in this chapter we prove Theorem A of the introduction.

Since this chapter provides the technical heart of our p-adic interpolation results, for the
convenience of the reader we briefly summarise its content.

• In §6.1, we set up the language of distributions on Galp, and endow them with an action
of H(AF ), which will later allow us to use the formalism of §4.3 when combined with
evaluation maps.

• In §6.2, we give the main technical construction and result of this chapter, namely the
construction of the commutative diagram in Proposition 6.12. This yields a p-adic inter-
polation of the classical branching laws for H ⊂ G described in §5.2.

• In §6.3, we define the overconvergent evaluation maps.
• In §6.4, we show that the overconvergent evaluations interpolate the classical evaluation

maps Ej,η0
χ of the previous section.

• In §6.5, we recall growth properties on distributions on Galp, and prove that distributions
in the image of our evaluation maps have controlled growth.

• In §6.6, we finally define the p-adic L-function of π̃ and prove Theorem A.

6.1. Distributions over Galois groups.

6.1.1. Definition of Galois distributions. Throughout this section, fix λπ ∈ X∗
0 (T ) a pure clas-

sical ‘base’ weight, and let
Ω = Sp(OΩ) ⊂ W Q

λπ

be an affinoid. We allow Ω = {λ} for λ classical, in which case OΩ = L. Let χΩ : T (Zp)→ O×
Ω

be the tautological character attached to Ω, and recall the purity weight wΩ : Z×
p → O×

Ω , all
defined in §3.2.3.
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We recall the structure of Galp. Recall OF,p = OF ⊗ Zp. For β = (βp)p|p with βp > 0 for
each p | p, let

Uβ
..= [1 + pβOF,p]/E(pβ),

where E(pβ) is the p-adic closure of

E(pβ) ..= {u ∈ O×
F ∩ F

×◦
∞ |u ≡ 1 (mod pβ)}.

Then by Class Field Theory we have an exact sequence

1→ Uβ
ι−→ Galp

ȷ−→ Cℓ+
F (pβ)→ 1. (6.1)

Recall the distribution modules D(X,R) from §3.2. The sum of the natural restriction maps
induces a decomposition

D(Galp,OΩ) ∼=
⊕

x∈Cℓ+
F

(pβ)

D(Galp[x],OΩ), (6.2)

where for x ∈ Cℓ+
F (pβ), we define

Galp[x] ..= ȷ−1(x) ⊂ Galp .

The map ι induces a map
ι∗ : D(Uβ ,OΩ) ↪→ D(Galp,OΩ),

whose image can be identified with D(Galp[1β ], L), where 1β is the identity element in Cℓ+
F (pβ).

In the limit, the Artin reciprocity map rec : A×
F → Galp induces an isomorphism

Galp
rec←−−−∼ Cℓ+

F (p∞) ..= F×\A×
F /U (p∞)F×◦

∞ , (6.3)

where U (p∞) =
∏
v∤pO×

v . Note that the cyclotomic character χcyc from (5.1) is naturally a
character on Galp; it is the character attached to the adelic norm via [16, §2.2.2].

6.1.2. Group actions on Galois distributions. If c ∈ A×
F and x ∈ Galp, to simplify notation we

write cx ..= rec(c)x. We define a left action of (δ1, δ2) ∈ A×
F ×A×

F on A(Galp,OΩ) by

(δ1, δ2) ∗ f(x) = χcyc(δ2)wΩf(δ−1
1 δ2x), (6.4)

and dually a left action on D(Galp,OΩ). Recall the evaluation maps of §4 were indexed over
π0(Xβ) (a product of two class groups), and prβ : π0(Xβ)→ Cℓ+

F (pβ) from (5.3).

Lemma 6.1. Let δ = (δ1, δ2) ∈ A×
F ×A×

F , representing an element [δ] ∈ π0(Xβ), and let

x = prβ([δ]) ∈ Cℓ+
F (pβ).

The action of δ induces an isomorphism

D(Uβ ,OΩ) ι∗−−→∼ D(Galp[1β ],OΩ) µ 7→ δ∗µ−−−−−−−→ D(Galp[x],OΩ).

Proof. The action of δ on µ ∈ D(Galp,OΩ) is induced by the action of δ−1 on A(Galp,OΩ) by

(δ−1 ∗ f)(x) = χcyc(δ2)−wΩf(δ1δ
−1
2 x).

By (4.4) δ1δ
−1
2 is a representative of x, so multiplication by δ1δ

−1
2 on Galp sends Galp[1β ]

isomorphically to Galp[x]. Hence this action induces a map

δ−1 ∗ − : A(Galp[x],OΩ)→ A(Galp[1β ],OΩ)

which dualises to the claimed map.

Via (6.4), we have an action of H(A) on f ∈ A(Galp,OΩ) by

(h1, h2) ∗ f ..= (det(h1), det(h2)) ∗ f, (6.5)

and hence a dual action on D(Galp,OΩ). Note that both H(Q) and H◦
∞ act trivially.
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6.2. p-adic interpolation of branching laws for H ⊂ G. Let K ⊂ G(Af ) be an open
compact subgroup as in §4.2. For each β with βp ⩾ 1 for all p|p, in §6.3 we will define a map

Evη0
β : Ht

c(SK ,DΩ)→ D(Galp,OΩ)

that simultaneously interpolates the evaluation maps Ej,η0
χ of §5 for all classical λ ∈ Ω, for all

j ∈ Crit(λ), and for all χ of conductor pβ .
The key step in the construction of this map, which we pursue in this subsection, is to

interpolate the branching law of Lemma 5.2 (which was crucially used in the definition of Ej,η0
χ ).

We do this by interpolating the maps κ◦
λ,j from (5.2), in the following sense: for classical λ ∈ Ω,

by Lemma 4.6 we have a commutative diagram

Ht
c(SK ,DΩ)

EvDΩ
β,δ //

rλ◦spλ

��

(DΩ)Γβ,δ

rλ◦spλ

��

D(Galp,OΩ)

µ7→spλ(µ)(χj
cyc)

��
Ht

c(SK ,V ∨
λ )

Ev
V ∨

λ
β,δ // (V ∨

λ )Γβ,δ

κ◦
λ,j // L,

(6.6)

and we now define the ‘missing’ horizontal map in the top row so that the horizontal compositions
commute with the outer vertical maps (see Proposition 6.12).

Our strategy is to construct a map

vβΩ : A(Galp,OΩ)→ AΓβ,δ

Ω ⊂ AΩ, (6.7)

where AΓβ,δ

Ω denotes the Γβ,δ-invariants, and then dualise to get the required map (DΩ)Γβ,δ
→

D(Galp,OΩ).
The map κ◦

λ,j was defined by an element vλ,j ∈ Vλ, which we described explicitly in Lemma
5.7 (noting vλ,j was defined to be κ∨

λ,j(u∨
j )). Our definition of vβΩ, given in (6.10), is really an

interpolation of this last description of vλ,j .

Remark. Note restricting elements of DΩ to the subspace AΓβ,δ

Ω ⊂ AΩ induces a well-defined
map (DΩ)Γβ,δ

→ (AΓβ,δ

Ω )∨. Slightly abusing notation/terminology, we will identify elements of
(DΩ)Γβ,δ

with their image under this map, and continue to call them distributions (on AΓβ,δ ).

6.2.1. Support conditions on distributions. We want to define vβΩ to interpolate vλ,j ∈ Vλ from
§5.2. However, we have explicitly described the function vλ,j : G(Zp) → L only on the subset
N×
Q (Zp) ⊂ G(Zp) (see Lemma 5.7). The following support condition shows that for the outer

vertical maps of (6.6) to commute with the horizontal compositions, it is sufficient to specify vβΩ
on subsets Nβ

Q(Zp) of N×
Q (Zp).

For β = (βp)p|p with each βp ⩾ 1, let

Nβ
Q(Zp) ..=

{
( 1 X

0 1 ) ∈ NQ(Zp) : X ≡ −In (mod pβ)
}
⊂ N×

Q (Zp), (6.8)

and define
Jβp

..= (N−
Q (Zp) ∩ Jp) ·H(Zp) ·Nβ

Q(Zp) ⊂ Jp.

Lemma 6.2. Let Φ ∈ Ht
c(SK ,DΩ), and let δ ∈ H(A). The distribution EvDΩ

β,δ(Φ) ∈ (DΩ)Γβ,δ

has support in Jβp , in the sense that if f ∈ AΓβ,δ

Ω , then

EvDΩ
β,δ(Φ)(f) = EvDΩ

β,δ(Φ)
(
f |Jβ

p

)
depends only on the restriction of f to Jβp .
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Proof. Via the map τ◦
β , we see that

EvDΩ
β,δ(Φ) ∈ (ξtβp ∗ DΩ)Γβ,δ

.

It thus suffices to prove that for any µ ∈ DΩ and f ∈ AΩ, we have

(ξtβp ∗ µ)(f) = (ξtβp ∗ µ)(f |Jβ
p

),

or equivalently that
(ξtβp )−1 ∗ f = (ξtβp )−1 ∗ f |Jβ

p
.

By definition (see §3.3), the action of (ξtβp )−1 on f ∈ AΩ is induced by the action

( 1 X
0 1 ) 7−→

[
tβp ( 1 X

0 1 ) t−βp
]
ξ−1 (6.9)

=
(

1 pβX
0 1

) (
In −In
0 wn

)
=
( 1 0

0 wn

) (
1 −In+pβXwn

0 1

)
∈ Jβp

on ( 1 X
0 1 ) ∈ NQ(Zp). Thus ((ξtβp )−1∗f)|NQ(Zp) depends only on f |Jβ

p
. By parahoric decomposition

(3.8), we deduce that (ξtβp )−1 ∗ f depends only on f |Jβ
p

, as claimed.

6.2.2. Interpolation of vHλ in families. Recall that the description of vλ,j in Lemma 5.7 was
given in terms of a specific vector vHλ ∈ V Hλ . We now interpolate vλ,j as λ varies in Ω.

In Notation 5.9, we fixed vHλπ
∈ V Hλπ

(OL) to be an (optimally integral) generator of the unique
line in V Hλπ

(L) on which the action of
〈(

h
h

)〉
λπ

is multiplication by (NF/Q ◦ det)wλπ .

Notation 6.3. Let vHΩ ..= vHλπ
⊗ 1 ∈ V HΩ .

The following statement is an analogue of Lemma 5.8 for families.

Lemma 6.4. Let h ∈ Gn(Zp). Then〈(
h
h

)〉
Ω · v

H
Ω = wΩ(NF/Q ◦ det(h)) vHΩ .

Proof. By the definition of the action of H(Zp) on V HΩ (see (3.5)), we have〈(
h
h

)〉
Ω · (v

H
λπ
⊗ 1) = wλπ

(NF/Q ◦ det(h))vHλπ
⊗ wΩ0(NF/Q ◦ det(h)),

recalling
χΩ0(h, h) = wΩ0(NF/Q ◦ det(h))

from (3.4). We conclude as wΩ = wλπ wΩ0 .

Lemma 6.5. If λ ∈ Ω is a classical weight, then spλ(vHΩ ) ∈ V Hλ (OL) is optimally integral,
non-zero, and 〈(

h
h

)〉
λ
· spλ(vHΩ ) = (NF/Q ◦ det(h))wλspλ(vHΩ ).

Proof. Non-vanishing is immediate from the definition, and the action property follows from spe-
cialising Lemma 6.4. To see spλ(vHΩ ) is integral, recall vHλπ

∈ V Hλπ
(OL) is integral, so vHλπ

(H(Zp)) ⊂
OL. Since λ is algebraic, we have λλ−1

π (H(Zp)) ⊂ O×
L . By definition spλ(vHΩ ) = vHλπ

⊗ λλ−1
π , so

we deduce
spλ(vHΩ )(H(Zp)) ⊂ OL.

As vHλπ
is optimally integral, it also follows that

ϖ−1
L spλ(vHΩ )(H(Zp)) ̸⊂ OL,

so spλ(vHΩ ) is optimally integral as claimed.
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Lemma 6.5 allows us to make the following renormalisation of the vectors from Notation 5.9,
which aligns them in the family Ω.

Definition 6.6. If λ ∈ Ω is a classical weight, let

vHλ
..= spλ(vHΩ ) ∈ V Hλ (OL).

Remark 6.7. This does not change our earlier choice of vHλπ
, since spHλπ

(vHΩ ) = vHλπ
.

From vHλ , as in §5.2 we obtain compatible choices of κ◦
λ,j as j varies in Crit(λ). The definition

of vHλ depends only on vHΩ , which depends only on the choice of vHλπ
. In particular, the (single)

choice of vHλπ
determines compatible choices of κ◦

λ,j for all classical λ ∈ Ω and all j ∈ Crit(λ).

6.2.3. Construction of vβΩ and κβΩ. Note

A(Uβ ,OΩ) ⊂ A(1 + pβOF,p,OΩ)

is the subset of functions invariant under E(pβ). Recall Nβ
Q(Zp) from (6.8). We have a map

Nβ
Q(Zp) −→ 1 + pβOF,p
( 1 X

0 1 ) 7−→ (−1)n det(X).

Define a map
vβΩ : A(1 + pβOF,p,OΩ) −→ AΩ

as follows. For f ∈ A(1 + pβOF,p,OΩ), define

vβΩ(f) : NQ(Zp)→ V HΩ

by setting, for X ∈ Mn(OF,p),

vβΩ(f)
(
In X
0 In

)
=

f
(
(−1)n det(X)

)( 〈(
X 0
0 In

)〉
Ω · v

H
Ω

)
: ( 1 X

0 1 ) ∈ Nβ
Q(Zp),

0 : else.
(6.10)

Extending under the parahoric decomposition using (3.8) determines vβΩ(f) as an element of AΩ.

Definition 6.8. Dualising

A(Uβ ,OΩ) ⊂ A(1 + pβOF,p,OΩ) −→ AΩ,

f 7−→ vβΩ(f)

gives a map

κβΩ : DΩ −→ D(Uβ ,OΩ). (6.11)

Remark 6.9. The map κβΩ, combined with Lemma 6.1, will induce the ‘missing’ map in (6.6).
To motivate (6.10) and Definition 6.8, compare to the description of κ◦

λ,j in Lemma 5.11. For
the support condition in (6.10), note that for the outer maps of (6.6) to commute, by Lemma
6.2 it suffices to consider vβΩ(f) supported on Jβp , and hence (by parahoric decomposition) on
Nβ
Q(Zp).

Restricting under (6.1), we may see χcyc as an element of A(Uβ , L), and thus make sense of
vβλ(χjcyc), supported on Jβp . Let λ ∈ Ω be classical. Recall

vλ,j : N×
Q (Zp)→ V Hλ (L)

from Lemma 5.11. In (5.8) of this lemma, we normalise vHλ as in Definition 6.6. The following
shows that vβλ interpolates vλ,j as j varies in Crit(λ), and hence interpolates branching laws in
the ‘cyclotomic direction’.
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Lemma 6.10. Let λ ∈ Ω be classical. For all j ∈ Crit(λ), we have

vβλ(χjcyc)
∣∣
Jβ

p
= vλ,j

∣∣
Jβ

p
.

Proof. If g = n−
Qh ( 1 X

0 1 ) ∈ Jβp , then

det(X) ∈ (−1)n + pβOF,p ⊂ (OF,p)×,

where the last inclusion follows as βp ⩾ 1 for all p. Hence

NF/Q ◦ det(X) ∈ Z×
p , so ( 1 X

0 1 ) ∈ N×
Q (Zp).

On such X we have

χjcyc((−1)n det(X)) = (−1)dnjNF/Q ◦ det(X)j .

Combining this and the definition of vβλ with Lemma 5.11, we see that

vβλ(χjcyc) [( 1 X
0 1 )] = vλ,j [( 1 X

0 1 )]

for all ( 1 X
0 1 ) ∈ Nβ

Q(Zp). We conclude vβλ(χjcyc) and vλ,j agree on all of Jβp , as they satisfy the
same transformation law under parahoric decomposition.

We now combine vβΩ with the formalism of evaluation maps developed in §4.3.

Proposition 6.11. (i) The action of ℓ = (ℓ1, ℓ2) ∈ Lβ on A(Galp,OΩ) under (6.5) is by

[ℓ ∗ f ] (x) ..= [(det(ℓ1), det(ℓ2)) ∗ f ](x) (6.12)
= NF/Q(det(ℓ2,p))wΩf(det(ℓ−1

1,pℓ2,p)x).

It preserves A(Uβ ,OΩ), giving it the structure of an Lβ-module.

(ii) The map

A(Uβ ,OΩ) −→ AΩ,

f 7−→ vβΩ(f)

is a map of Lβ-modules.

(iii) The image of vβΩ is a subspace of the Γβ,δ-invariants AΓβ,δ

Ω .

(iv) The map κβΩ from Definition 6.8 is a map of left Lβ-modules, and factors through

κβΩ : (DΩ)Γβ,δ
→ D(Uβ ,OΩ).

Proof. (i) Since det(ℓi) ∈ (OF ⊗ Ẑ)×, we have

χcyc(det(ℓ2)) = NF/Q(det(ℓ2,p))

and det(ℓi,v) ∈ U (p∞) for all v ∤ p∞. Hence

[det(ℓ−1
1 ℓ2)x] = [det(ℓ−1

1,pℓ
−1
2,p)x]

in Galp, and (6.4) induces the stated action. It preserves A(Uβ ,OΩ) since det(ℓ−1
1,pℓ2,p) ≡

1 (mod pβ) by [38, Lem. 2.1].
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(ii) For f ∈ A(Uβ , L), we must show that

ℓ ∗ vβΩ(f) = vβΩ(ℓ ∗ f).

Let X ∈ Mn(OF,p). If det(X) ̸= (−1)n (mod pβ), both sides are zero at ( 1 X
0 1 ). If det(X) ≡

(−1)n (mod pβ), then

(ℓ ∗ vβΩ(f))
(
In X
0 In

)
= vβΩ(f)

(
ℓ1,p Xℓ2,p

0 ℓ2,p

)
=
〈(

ℓ1,p 0
0 ℓ2,p

)〉
Ω
· vβΩ(f)

(
In ℓ−1

1,pXℓ2,p

0 In

)
=
〈(

ℓ1,p 0
0 ℓ2,p

)〉
Ω
·
〈(

ℓ−1
1,pXℓ2,p 0

0 In

)〉
Ω
·
(
f
[
(−1)n det(ℓ−1

1,pXℓ2,p)
]
vHΩ

)
=
〈(

X 0
0 In

)〉
Ω ·
〈(

ℓ2,p 0
0 ℓ2,p

)〉
Ω
·
(
f
[
(−1)n det(ℓ−1

1,pXℓ2,p)
]
vHΩ

)
=
〈(

X 0
0 In

)〉
Ω ·
(

NF/Q(det(ℓ2,p))wΩf
[
(−1)n det(ℓ−1

1,pℓ2,p) det(X)
]
vHΩ

)
=
〈(

X 0
0 In

)〉
Ω ·
(

(ℓ ∗ f)
[
(−1)n det(X)

]
vHΩ

)
= vβΩ(ℓ ∗ f)

(
In X
0 In

)
,

proving (ii); the first equality is the ∗-action, the second is (3.8), the third is (6.10), the fifth is
Lemma 6.4, the sixth by (i), and the last is (6.10).

(iii) Note Γβ,δ ⊂ H(Q) acts trivially on A(Galp,OΩ) (see (6.5)). Hence δ−1Γβ,δδ ⊂ Lβ

acts trivially on A(Galp,OΩ), hence trivially on A(Uβ ,OΩ). From (ii), it follows that δ−1Γβ,δδ –
acting as a subgroup of Lβ – acts trivially on the image of vβΩ. But by definition of the Γβ,δ-action
(see (4.7)), this means Γβ,δ acts trivially on this image.

(iv) That κβΩ is a map of Lβ-modules follows from (ii), and thus it factors through (DΩ)Γβ,δ

since the target is Γβ,δ-invariant by (iii).

6.2.4. Proof that κβΩ interpolates κ◦
λ,j. The following is the main result of §6.2.

Proposition 6.12. Let λ ∈ Ω classical and j ∈ Crit(λ). The following diagram commutes:

Ht
c(SK ,DΩ)

EvDΩ
β,δ //

spλ

��

(DΩ)Γβ,δ

κβ
Ω //

spλ

��

D(Uβ ,OΩ)
spλ

��
Ht

c(SK ,Dλ)
EvDλ

β,δ //

rλ

��

(Dλ)Γβ,δ

κβ
λ // D(Uβ , L)∫

Uβ
χj

cyc

��
Ht

c(SK ,V ∨
λ )

Ev
V ∨

λ
β,δ // (V ∨

λ )Γβ,δ

κ◦
λ,j // L.

(6.13)

Proof. The top left-hand square commutes by Lemma 4.6. We next consider the top-right square.
In the definition of κβΩ, note by definition that spλ(vHΩ ) = vHλ and the action ⟨·⟩Ω specialises to
⟨·⟩λ under spλ. In particular, if fλ ∈ A(Uβ , L) and fΩ ∈ A(Uβ ,OΩ) is any lift under spλ, then

spλ[vβΩ(fΩ)] = vβλ(fλ) ∈ Aλ.

We describe the map spλ : DΩ → Dλ directly. Let µΩ ∈ DΩ, and gλ ∈ Aλ. Choose any
gΩ ∈ AΩ with spλ(gΩ) = gλ. Then

[spλ(µΩ)](gλ) = spλ[µΩ(gΩ)] ∈ OΩ/mλ,
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which is easily seen to be independent of lift. Here mλ ⊂ OΩ is the maximal ideal attached to λ.
In particular, for fλ, fΩ as above,

spλ(µΩ)[vβλ(fλ)] = spλ[µΩ(vβΩ(fΩ))].

Let µΩ ∈ (DΩ)Γβ,δ
; then the top right square commutes as

[κβλ ◦ spλ(µΩ)](fλ) = spλ(µΩ)
[
vβλ(fλ)

]
= spλ

[
µΩ
(
vβΩ(fΩ)

)]
= spλ

[
(κβΩ(µΩ))(fΩ)

]
= [spλ ◦ κ

β
Ω(µΩ)

]
(fλ).

We have used the previous paragraph in the second equality.
Now consider the bottom rectangle. If we ‘complete’ (6.13) with the natural map rλ :

(Dλ)Γβ,δ
→ (V ∨

λ )Γβ,δ
, then the bottom-left square would commute by Lemma 4.6, but the

bottom-right square would not commute, due to support conditions. However if µ ∈ Im(EvDλ

β,δ),
then µ is supported on Jβp by Lemma 6.2. For such µ, compute∫

Uβ

χjcyc · κ
β
λ(µ) =

∫
Jp

vβλ(χjcyc) · µ

=
∫
Jβ

p

vβλ(χjcyc) · µ =
∫
Jβ

p

vλ,j · µ =
∫
G(Zp)

vλ,j · rλ(µ)

(recalling from Lemma 5.11 that κ◦
λ,j is evaluation at vλ,j). In the second equality, we use that

µ has support on Jβp , whence the third equality follows from Lemma 6.10. In the last, because
vλ,j ∈ Vλ we have µ(vλ,j) = rλ(µ)(vλ,j), and then we expand from Jβp to G(Zp) using that µ
(hence rλ(µ)) is supported on Jβp again. Thus the bottom-right square is commutative on the
image of EvDλ

β,δ, and the bottom rectangle is commutative.

6.3. Distribution-valued evaluation maps. We now define overconvergent analogues of
Ej,η0
χ . Let

• δ = (δ1, δ2) ∈ H(A),

• let [δ] be its class in π0(Xβ), and

• let x = prβ([δ]) ∈ Cℓ+
F (pβ), for prβ as in (5.3).

As above, det(δ1δ
−1
2 ) ∈ A×

F is a representative of x. Recall the evaluation map EvDΩ
β,δ from §4.2.3,

and define a ‘Galois evaluation’ Evβ,[δ] as the composition

Evβ,[δ] : Ht
c(SK ,DΩ)

EvDΩ
β,δ−−−−−→ (DΩ)Γβ,δ

κβ
Ω−−−−−→ D(Uβ ,OΩ) (6.14)

µ 7→ δ∗µ−−−−−−−−→ D(Galp[x],OΩ).

Here the action of δ on µ is by (6.5), the map κΩ
β was defined in Definition 6.8, and the target

is D(Galp[x],OΩ) by Lemma 6.1.

Lemma 6.13. Evβ,[δ] is independent of the choice of the representative δ of [δ] ∈ π0(Xβ).

Proof. Recall D(Galp,OΩ) is a H(A)-module via (6.5), with H(Q) and H◦
∞ acting trivially. Let

κ : DΩ
κβ

Ω−−−→ D(Uβ ,OΩ) ι∗−−→∼ D(Gal[1β ],OΩ) ⊂ D(Galp,OΩ)

denote the composition. From Proposition 4.9, we have a map

EvDΩ,κ
β,[δ] : Ht

c(SK ,DΩ)→ D(Galp,OΩ).
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If Φ ∈ Ht
c(SK ,DΩ) then by definition we have

EvDΩ,κ
β,[δ] (Φ) = δ ∗ [κ ◦ EvDΩ

β,δ(Φ)] = Evβ,[δ](Φ).

Then independence of δ follows from Proposition 4.9.

As in Definition 5.4, let η0 be any finite order character of Cℓ+
F (m). Then define

Evη0
β,x : Ht

c(SK ,DΩ) −→ D(Galp[x],OΩ)

Φ 7−→
∑

[δ]∈pr−1
β

(x)

η−1
0
(
pr2([δ])

)
Evβ,[δ](Φ).

Using (6.2), we finally obtain an evaluation map

Evη0
β

..=
⊕

x∈Cℓ+
F

(pβ)

Evη0
β,x : Ht

c(SK ,DΩ) −→ D(Galp,OΩ) (6.15)

Φ 7−→
∑

[δ]∈π0(Xβ)

η−1
0
(
pr2([δ])

)
×
(
δ ∗
[
κβΩ ◦ EvDΩ

β,δ(Φ)
])
.

Remark 6.14. In the notation of Remark 5.5, Evη0
β is the composition

Ht
c(SK ,DΩ)

⊕Evβ,[δ]

&&

Evη0
β //

⊕EvDΩ
β,δ //
⊕
[δ]

(DΩ)Γβ,δ

δ∗κβ
Ω //

⊕
[δ]

D(Galp[prβ([δ])],OΩ)

ΣxΞη0
x

��
D(Galp,OΩ),

(6.16)

where again Ξη0
x sends a tuple (m[δ])[δ] to

∑
[δ]∈pr−1

β
(x) η

−1
0 (pr2([δ]))×m[δ].

The maps Evη0
β are functorial in Ω. Let λ ∈ Ω, and let spλ : OΩ → L denote evaluation at λ.

Proposition 6.15. Let β = (βp)p|p with βp > 0 for each p|p. We have a commutative diagram

Ht
c(SK ,DΩ)

Evη0
β //

spλ

��

D(Galp,OΩ)

spλ

��
Ht

c(SK ,Dλ)
Evη0

β // D(Galp, L).

Proof. We check that every square in the following diagram is commutative, where the horizontal
maps are as in Remark 6.14 (with the middle horizontal maps a composition of two of the maps
in that remark) and every vertical map is induced from spλ:

Ht
c(SK ,DΩ) //

��

⊕
[δ]D(Uβ ,OΩ) //

��

⊕
xD(Galp[x],OΩ) //

��

D(Galp,OΩ)

��
Ht

c(SK ,Dλ) //⊕
[δ]D(Uβ , L) //⊕

xD(Galp[x], L) // D(Galp, L).

The first square commutes by Proposition 6.12. The second horizontal arrows are induced by
δ ∗ −, and spλ is H(A)-equivariant, so the second square commutes. The remaining horizontal
maps are given by taking linear combinations, which commutes with spλ.
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Proposition 6.16. Let β ∈ (Z⩾0)p|p and fix p|p in F . Suppose that βq > 0 for each q|p and let
β′ be the tuple defined by β′

p = βp + 1 and β′
q = βq for each prime q|p other than p. Then

Evη0
β′ = Evη0

β ◦ U
◦
p : Ht

c(SK ,DΩ) −→ D(Galp,OΩ).

Proof. For each [δ] ∈ π0(Xβ), from Proposition 4.10 we deduce∑
[δ′]∈pr−1

β,p
([δ])

Evβ′,[δ′] = Evβ,[δ] ◦ U◦
p .

Scaling the left-hand side by η−1
0 (pr2([δ])) and summing over [δ] ∈ π0(Xβ) gives Evη0

β′ (see (6.15)),
and doing the same on the right-hand side gives Evη0

β ◦ U◦
p , from which we conclude.

Definition 6.17. Let Φ ∈ Ht
c(SK ,DΩ), and suppose that for every p|p, Φ is an eigenclass for

U◦
p with eigenvalue α◦

p ̸= 0. We define

µη0(Φ) := Evη0
β (Φ)/(α◦

p)β ∈ D(Galp,OΩ), (6.17)

where β is any tuple such that βp > 0 for each p|p and (α◦
p)β :=

∏
p|p(α◦

p)βp . By Proposition 6.16,
the distribution µη0(Φ) is independent of the choice of β.

6.4. Interpolation of classical evaluations. Fix λ ∈ X∗
0 (T ). Via specialisation Ht

c(SK ,Dλ) rλ−→
Ht

c(SK ,V ∨
λ ), we now relate Evη0

β from (6.16) to the evaluations Ej,η0
χ of (5.5) as λ varies over Ω,

j varies in Crit(λ) and χ varies over finite order characters of conductor pβ .

Lemma 6.18. Let Φ ∈ Ht
c(SK ,Dλ). Let χ be a finite order Hecke character of F of conductor

pβ, with βp > 0 for all p|p. For all j ∈ Crit(λ), we have∫
Galp

χ χjcyc · Evη0
β (Φ) = Ej,η0

χ ◦ rλ(Φ).

Proof. In view of Remarks 6.14 and 5.5, the lemma follows directly from commutativity of the
following diagram, since the maps Evη0

β and Ej,η0
χ are respectively the left and right columns:

Ht
c(SK ,Dλ)

⊕
(
κβ

λ
◦EvDλ

β,δ

)
��

rλ // Ht
c(SK ,V ∨

λ )

⊕
(
κ◦

λ,j◦Ev
V ∨

λ
β,δ

)
��⊕

[δ]
D(Uβ , L)

δ∗
��

⊕
∫

Uβ
χj

cyc
//⊕

[δ]
L

δ∗
��⊕

[δ]
D(Galp[x], L)

⊕Ξη0
x

��

⊕
∫

Galp[x]
χj

cyc
//⊕

[δ]
L

⊕Ξη0
x

��⊕
x
D(Galp[x], L)

Σ
��

⊕
∫

Galp[x]
χj

cyc
//⊕

x
L

ℓ7→Σχ(x)ℓx
��

D(Galp, L)

∫
Galp

χχj
cyc

// L.

Recall Ξη0
x was defined in (5.5) and all the direct sums are over [δ] ∈ π0(Xβ) or x ∈ Cℓ+

F (pβ),
related by x = prβ(δ). The first square commutes by Proposition 6.12. The second square
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commutes since for µ ∈ D(Uβ , L) we have∫
Galp[z]

χjcyc · δ ∗ µ = χcyc

(
det(δ1)j det(δ2)−w−j

)∫
Galp[z]

χjcyc · µ

= δ ∗
∫

Galp[z]
χjcyc · µ,

where the action of δ in the left-hand term is (6.4), and in the right-hand term is Definition 5.1.
The third square commutes by definition of Ξη0

x , and the fourth square commutes since∫
Galp

χχjcyc · µ =
∑

x∈Cℓ+
F

(pβ)

χ(x)
∫

Galp[x]
χjcyc · µ.

6.5. Admissibility of µη0(Φ). We now assume Ω = {λ} is a single algebraic weight, in which
case OΩ = L is a finite extension of Qp. Let Φ and {α◦

p : p|p} be as in Definition 6.17, and let

α◦
p

..=
∏
p|p

(α◦
p)ep , hp = vp(α◦

p).

We show µη0(Φ) satisfies a growth condition depending on hp that importantly renders it unique
for the very small slope case hp < #Crit(λ).

As in [11, §3.4], the space A(Galp, L) of L-valued locally analytic functions on Galp is the
direct limit lim−→m

Am(Galp, L) of the spaces which are analytic on all balls of radius |p|−m, and
each of these is a Banach L-space with respect to a discretely valued norm || · ||m. Dualising, we
get a family of norms

||µ||m ..= supf∈Am(Galp,L)
|µ(f)|
||f ||m

= sup||f ||m⩽1|µ(f)| (6.18)

on D(Galp, L), which thus obtains the structure of a Fréchet module.

Definition 6.19. (See [11, Def. 3.10]). Let h ∈ Q⩾0. We say µ ∈ D(Galp, L) is admissible of
growth h if there exists C ⩾ 0 such that for each m ∈ Z⩾1, we have ||µ||m ⩽ pmhC.

Proposition 6.20. Let Φ be as in Definition 6.17, and hp = vp(α◦
p). Then µη0(Φ) is admissible

of growth hp.

Proof. We follow the proof of [11, Prop. 3.11], where this is proved for GL2. For m ∈ Z⩾1, put

βm = (mep)p|p,

so that
|(α◦

p)−βm | = pmhp and pβmOF,p = pmOF,p.

By definition of µη0 , for f ∈ Am(Galp, L) we have

|µη0(Φ)(f)| =

pmhp

∣∣∣∣ ∑
[δ]∈π0(Xβm )

η−1
0
(
pr2([δ])

)
EvDλ

βm,δ
(Φ)

[
vβm

λ

(
δ−1 ∗ f

∣∣
Galp[prβm

([δ])]

)] ∣∣∣∣. (6.19)

By (6.19) it suffices to find C such that for all δ, m ∈ Z⩾1 and f ∈ Am(Galp, L) with ||f ||m ⩽ 1,
we have ∣∣∣EvDλ

βm,δ
(Φ)

[
vβm

λ

(
δ−1 ∗ f

∣∣
Galp[prβm

([δ])]

)]∣∣∣ ⩽ C. (6.20)
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We also have descriptions Aλ = lim−→m
Aλ,m and Dλ = lim←−mDλ,m as limits of Banach spaces

(see [19, §3.2.2]), and each of the Dλ,m are preserved by the action of ∆p (§3.4 ibid.). For every
m ⩾ 1, restriction from Aλ to Aλ,m induces a map Dλ → Dλ,m. We let D◦

λ,m denote the OL-
module of distributions µ ∈ Dλ,m with ||µ||m ⩽ 1, which is a lattice preserved by the action
of ∆p. Note that rescaling Φ does not affect admissibility (it rescales C); so without loss of
generality, we can suppose that the image Φ1 of Φ in Ht

c(SK ,Dλ,1) is contained in the image of
Ht

c(SK ,D◦
λ,1), that is, there exists Φ◦

1 such that we have

Ht
c(SK ,D◦

λ,1)

��

Φ◦
1_

��
Ht

c(SK ,Dλ) // Ht
c(SK ,Dλ,1) Φ � // Φ1

Fix δ and m ∈ Z⩾1. For ease of notation, let

tm ..= ξtβm
p , Γm ..= Γβm,δ.

As in the proof of Lemma 6.2 there exist µ ∈ Dλ and µ1 ∈ D◦
λ,1 such that

EvDλ

βm,δ
(Φ) = (tm ∗ µ)δ

and EvDλ,1
βm,δ

(Φ1) = EvD◦
λ,1

βm,δ
(Φ◦

1) = (tm ∗ µ1)δ,

where in the second equation, we have applied Lemma 4.6 with κ the inclusion D◦
λ,1 ↪→ Dλ,1. By

Lemma 4.6 applied again, now with κ the map Dλ → Dλ,1, we deduce

µ
∣∣∣
t−1

m ∗AΓm
λ,1

= µ1

∣∣∣
t−1

m ∗AΓm
λ,1

. (6.21)

Note if g ∈ Aλ,m, then by definition g is analytic on

{( 1 X
0 1 ) : X ∈ −In + pmMn(OF,p)} ⊂ NQ(Zp).

Since the action of tm sends NQ(Zp) onto this subset (see (6.9)), we have

t−1
m ∗ g ∈ tm ∗ Aλ,m ⊂ Aλ,0 ⊂ Aλ,1

(i.e. tm sends m-analytic functions to analytic functions). As vβm

λ preserves m-analyticity, we
thus have

t−1
m ∗ v

βm

λ [Am(1 + pmOF,p, L)] ⊂ Aλ,1,

and we can evaluate µ1 on this set. Then:

Claim 6.21. We have

µ
∣∣∣
t−1

m ∗vβm
λ

[
Am(1+pmOF,p,L)

] = µ1

∣∣∣
t−1

m ∗vβm
λ

[
Am(1+pmOF,p,L)

]. (6.22)

We explain how Proposition 6.20 follows from the claim. For f as above, let fδ ..= δ−1 ∗
f |Galp[prβm

([δ])]. As in Lemma 6.1, we have

fδ ∈ Am(Uβm
, L) ⊂ Am(1 + pmOF,p, L).

Moreover ||t−1
m ∗ v

βm

λ (fδ)||1 ⩽ 1: indeed

– ||f ||m ⩽ 1 by assumption;
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– the action of δ−1 preserves integrality (as χcyc is valued in Z×
p );

– vβm

λ preserves integrality (as vHλ was chosen integral); and

– t−1
m preserves integrality (as it acts only on the argument).

Thus ∣∣∣EvDλ

βm,δ
(Φ)

[
vβm

λ

(
δ−1 ∗ f

∣∣
Galp[prβm

([δ])]

)]∣∣∣ =
∣∣µ(t−1

m ∗ v
βm

λ (fδ)
)∣∣

=
∣∣µ1
(
t−1
m ∗ v

βm

λ (fδ)
)∣∣ ⩽ ||µ1||1 ⩽ 1,

where the first equality is by definition, the second is Claim 6.21, the third inequality is by
definition of || · ||1 on Dλ,1 (the direct analogue of (6.18)) using ||t−1

m ∗ v
βm

λ (fδ)||1 ⩽ 1, and the
last inequality follows as µ1 ∈ D◦

λ,1. Since δ,m and f were arbitrary, this shows (6.20) and thus
Proposition 6.20.

It remains to prove Claim 6.21. We first motivate the statement, in line with the proof of
[11, Prop. 3.11]. We might aim to prove the stronger statement that µ and µ1 agree on the set
t−1
m ∗ A

Γm

λ,m (which contains t−1
m ∗ v

βm

λ [Am(1 + pmOF,p, L)]); and to do this, it would suffice to
show

t−1
m ∗ A

Γm

λ,1 ⊂ t
−1
m ∗ A

Γm

λ,m

is dense, whence equality would follow from (6.21). However it is not clear how to write down
explicit bases of AΓm

λ,m. Instead we essentially prove an analogous density for the smaller, but
still sufficient, subset in the claim, using explicit bases for Am(1 + pmOF,p, L).

We have coordinates z = (zσ)σ∈Σ on OF,p. Note m-analytic functions on 1 + pmOF,p are
analytic, and an orthonormal basis for Am(1 + pmOF,p, L) is given by the monomials

yim
..=
(
z − 1
pβm

)i∣∣∣∣∣
1+pmOF,p

=
∏
σ∈Σ

(
zσ − 1
π
ep(σ)m

p(σ)

)iσ ∣∣∣∣∣∣
1+pmOF,p

for i = (iσ) ∈ N[Σ]. First we show that for any i, we have

µ
(
t−1
m ∗ v

βm

λ (yi1)
)

= µ1

(
t−1
m ∗ v

βm

λ (yi1)
)
. (6.23)

To see this, note that vβ1
λ (yi1) ∈ AΓ1

λ,1 exactly as in Proposition 6.11(iii), and we also have

t−1
m ∗ v

β1
λ (yi1) = t−1

m ∗
[(
vβ1
λ (yi1)

)∣∣∣
Nβm

Q
(Zp)

]
= t−1

m ∗ v
βm

λ (yi1),

where the first equality follows as the action of tm sends NQ(Zp) to Nβm

Q (Zp), and the second
from the definition of vβm

λ . Combining, we have

t−1
m ∗ v

βm

λ (yi1) ∈ t−1
m ∗ A

Γm

λ,1

and (6.23) follows by (6.21).
Now directly from the definitions we have

pi(βm−1)[t−1
m ∗ v

βm

λ (yim)
]

=
[
t−1
m ∗ v

βm

λ (yi1)
]
,

and combining with (6.23) we deduce

µ
(
t−1
m ∗ v

βm

λ (yim)
)

= µ1
(
t−1
m ∗ v

βm

λ (yim)
)
.

Claim 6.21 and Proposition 6.20 follow as the yim are an orthonormal basis ofAm(1+pmOF,p).
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6.6. Non-Q-critical p-adic L-functions. We prove Theorem A from the introduction. Let
π̃ = (π, {αp}p|p) be a Q-refined RACAR of weight λ satisfying Conditions 2.8′. In particular, it
admits an (η, ψ)-Shalika model, with η = η0| · |w and w the purity weight of λ. Suppose that π̃
is non-Q-critical (Definition 3.14). Fix K = K(π̃) and ϵ ∈ {±1}Σ, and let ϕϵπ̃ ∈ Ht

c(SK ,V ∨
λ )ϵmπ̃

as in Definition 2.10. By definition of non-Q-criticality, ϕϵπ̃ lifts uniquely to an eigenclass Φϵπ̃ ∈
Ht

c(SK ,Dλ)ϵmπ̃
with U◦

p -eigenvalue α◦
p, recalling α◦

p = λ(tp)αp. As above, write α◦
p =

∏
p|p(α◦

p)ep .

Definition 6.22. Let Lϵp(π̃) ..= µη0(Φϵπ̃) be the distribution on Galp attached to Φϵπ̃. Let
Φπ̃ =

∑
ϵ∈{±1}Σ Φϵπ̃, and define the p-adic L-function attached to π̃ as

Lp(π̃) ..= µη0(Φπ̃)

=
∑

ϵ∈{±1}Σ

Lϵp(π̃) ∈ D(Galp, L).

For shorthand, for any ψ ∈ A(Galp, L) we write

Lp(π̃, ψ) ..=
∫

Galp

ψ · Lp(π̃).

Let
X (Galp) ..= (Spf Zp⟦Galp⟧)rig

denote the rigid analytic space of p-adic characters on Galp. Via the Amice transform we may
view Lp(π̃,−) : X (Galp)→ Qp as an element of O(X (Galp)).

Theorem 6.23. The distribution Lp(π̃) is admissible of growth hp = vp(α◦
p), and satisfies the

following interpolation property: for every finite order Hecke character χ of F of conductor pβ,
and all j ∈ Crit(λ), we have

i−1
p (Lp(π̃, χχjcyc)) = Aτ(χf )nNF/Q(d)jn

∏
p|p

ep(π̃, χ, j) · e∞(π, χ, j) ·
L(p)(π ⊗ χ, j + 1

2
)

Ωϵπ
, (6.24)

where ϵ = (χχjcycη)∞ and e∞(π, χ, j) is as in Definition 5.18. At p we have

ep(π̃, χ, j) ..= q
(βp)
(
nj+n2−n

2

)
p α

−βp
p

if χp is ramified, whilst if χp is unramified we define

ep(π̃, χ, j) ..=
2n∏

i=n+1

1− θ−1
p,iχ

−1
p (ϖp)qj−1/2

p

1− θp,iχp(ϖp)q−j−1/2
p

.

Finally A is the global constant

A = γpm ·
∏
p|p

qnp
(qp − 1)n q

−δp
(
n2+n

2

)
p ∈ Q×. (6.25)

Proof. Admissibility is Proposition 6.20. For the interpolation, from Lemma 6.18 we know∫
Galp

χ χjcyc · µη0(Φπ̃) = (α◦
p)−β × Eη0

χ,j(ϕπ̃),

where we must replace βp with max(βp, 1)). This is equal to the statement by Theorem 5.22, not-
ing λ(tβp )(α◦

p)−β = α−β
p and NF/Q(d)jn = NF/Q(d(p))jn

∏
p|p q

δpnj
p . Note that i−1

p (Lϵp(π̃, χχjcyc)) =
0 if ϵ ̸= (χχjcycη)∞.
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Remarks 6.24. The same theorem holds under the weaker hypothesis of Conditions 2.8′, but
with the additional assumption that βp ⩾ 1 for all p|p, i.e. each χp is ramified. To include βp = 0
requires a careful analysis of the local zeta integral at p for ramified πp and unramified χp, which
was carried out by the second author with Jorza [39].

Finally we consider uniqueness properties of Lp(π̃).

Proposition 6.25. Suppose Leopoldt’s conjecture holds for F at p, and that hp < #Crit(λ).
Then Lp(π̃) is uniquely determined by its interpolation and admissibility properties.

Proof. Leopoldt’s conjecture implies that Galp is 1-dimensional as a p-adic Lie group. Uniqueness
is then a result of Vishik [85, Thm. 2.3, Lem. 2.10], shown independently by Amice–Velu [2].

When hp < #Crit(λ), the restriction of Lp(π̃) to Galcyc
p is unique even without Leopoldt’s

conjecture. This can be seen by arguments analogous to [11, (78)].
When hp ⩾ #Crit(λ), we will prove analogous uniqueness results in §8.5, as an application

of our construction of p-adic L-functions in families.

7. Shalika families

For the rest of the paper, we will be concerned with variation in families. In this section, we prove
Theorem B of the introduction; namely, we show that: (1) the eigenvariety is étale at a non-Q-
critical Q-refined RASCAR π̃, and (2) that the unique component through such a π̃ is a Shalika
family. Since we believe these results to be of independent interest beyond our precise results
on p-adic L-functions, we first present them in wide generality here, always working with Hecke
operators away from the set S of ramified primes from §2.4. In the process, we develop methods
that will be crucially used in the next section, where we make an automorphic hypothesis and
add further Hecke operators at each v ∈ S, and refine these results to better suit the study of
p-adic L-functions.

Throughout, let π̃ be a Q-refined RACAR of weight λπ satisfying (C1-2) from Conditions 2.8.
An undecorated K will always mean an arbitrary subgroup satisfying the conditions of (2.20).
We will also consider more specific choices K(π̃),K1(π̃). Unless otherwise specified, we take all
coefficients to be in a sufficiently large extension L/Qp as in §2.10 and drop it from notation.

7.1. Set-up, statement of Thm. 7.6 and summary of proof.

7.1.1. The eigenvarieties. We introduce local charts around π̃ on a parabolic eigenvariety. Fix
h ∈ Q⩾0. Via §3.3, let Ω be an L-affinoid neigbourhood of λπ in W Q

λπ
such that Ht

c(SK ,DΩ)
admits a slope ⩽ h decomposition with respect to U◦

p . Recall H from §2.9.

Definition 7.1. • Define TΩ,h(K) to be the image of

H⊗OΩ −→ EndOΩ

(
Ht

c(SK ,DΩ)⩽h
)
.

• Define
EΩ,h(K) ..= Sp(TΩ,h(K)),

a rigid analytic space.

Let w : EΩ,h(K)→ Ω be the weight map induced by the structure map OΩ → TΩ,h(K). For
any ϵ ∈ {±1}Σ, write Tϵ

Ω,h(K) and E ϵ
Ω,h(K) for the analogues using ϵ-parts of the cohomology.

As Tϵ
Ω,h is a quotient of TΩ,h, each E ϵ

Ω,h(K) embeds as a closed subvariety of EΩ,h(K). Moreover

EΩ,h(K) =
⋃
ϵ E ϵ

Ω,h(K).
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The local piece EΩ,h(K) is the space denoted EQ,tΩ,h in [19, §5]. By definition, EΩ,h(K) is a rigid
space whose L-points y are in bijection with non-trivial algebra homomorphisms TΩ,h(K)→ L,
or equivalently, with systems of eigenvalues ψy : H → L appearing in Ht

c(SK ,DΩ)⩽h.
We use the convention that C (resp. I ) denotes a connected (resp. irreducible) component

of E (with appropriate decorations).

Definition 7.2. (i) We say a point y ∈ EΩ,h(K) is classical if there exists a cohomological
automorphic representation πy of G(A) having weight λy ..= w(y) such that ψy appears in
πKy , whence π̃y = (πy, {ψy(U◦

p )}p|p) is a Q-refined automorphic representation. Throughout
we use the notation my = mπ̃y

for the associated maximal ideal of TΩ,h(K).

(ii) A classical point y is cuspidal (resp. essentially self-dual) if πy is.

(iii) For a finite order Hecke character η0, an (η0, ψ)-Shalika point is a classical cuspidal point
y such that πy admits an (η0| · |wy , ψ)-Shalika model, where wy is the purity weight of λy.

(iv) A classical (resp. (η0, ψ)-Shalika) family in EΩ,h(K) is an irreducible component I in
EΩ,h(K) containing a Zariski-dense set of classical (resp. (η0, ψ)-Shalika) points.

To describe the geometry of EΩ,h(K), we must be precise about the level K. In Theorem 7.6,
there will be two particularly important level groups: the group K(π̃) from (2.23), at which
Friedberg–Jacquet test vectors exist; and a more explicit group K1(π̃), which we now define. For
any place v and m ∈ Z⩾0 let

K1,v(m) ⊂ GL2n(Ov)

be the open compact subgroup of matrices whose bottom row is congruent to (0, ..., 0, 1) mod ϖm
v .

The Whittaker conductor m(πv) of πv is the minimal integer m such that πK1,v(m)
v ̸= 0, and by

[51, §5]
dimC πK1,v(m(πv))

v = 1. (7.1)

Note K1,v(0) = GL2n(Ov), so πv is spherical if and only if m(πv) = 0. We define

K1(π̃) ..=
∏

p|p Jp
∏
v∤pK1,v(m(πv)) ⊂ G(Af ). (7.2)

7.1.2. Hypotheses on π. Our results require hypotheses on π that we now make precise.

Definition 7.3. We say π admits a non-zero Deligne-critical L-value at p if there exists a pair
(χ, j) such that

L(π ⊗ χ, j + 1
2 ) ̸= 0,

where j ∈ Crit(λπ) and χ is a finite order Hecke character of conductor pβ with βp ⩾ 1 for all p.
This L-value has sign ϵ if ϵ = (χχjcycη)∞ ∈ {±1}Σ.

Note that L(π⊗χ, s) ̸= 0 ⇐⇒ L(p)(π⊗χ, s) ̸= 0 (as the local factors at p are non-vanishing).

Conjecturally, this non-vanishing is true for all but finitely many such pairs (χ, j), so every π
should satisfy this hypothesis. In practice, this is guaranteed by the following simple criterion.

Lemma 7.4. π has a non-zero Deligne-critical L-value at p if (λπ)σ,n > (λπ)σ,n+1 ∀σ ∈ Σ.

Proof. Let j be the largest integer in Crit(λπ), and χ any Hecke character satisfying the con-
ditions of Definition 7.3. The hypothesis ensures that #Crit(λπ) > 1, so that j + 1

2 ⩾ w
2 + 1

(recalling w is the purity weight), and hence L(π ⊗ χ, j + 1
2 ) ̸= 0 by the main result of [52].

Definition 7.5. Recall λ is regular if λσ,i > λσ,i+1 for all σ and i. Say it is H-regular if

λσ,1 > · · · > λσ,n and λσ,n+1 > · · · > λσ,2n (7.3)

for all σ (allowing λσ,n = λσ,n+1). Such weights are regular as weights for H.
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For a field E, let GE
..= Gal(E/E). Attached to any RACAR π′ of G(A) we have a Galois

representation ρπ′ : GF → GL2n(Qp), depending on our fixed isomorphism ιp : C ∼= Qp (see
[47]). For a finite prime v of F , we say Local-Global Compatibility holds for π′ at v if

WD(ρπ′ |GFv
)F−ss = ιprecFv

(π′
v ⊗ | · |(1−n)/2),

where recFv
denotes the local Langlands correspondence for GL2n /Fv. This is conjecturally

always true; it is known in general up to semi-simplification [82], and is known when π′ is
essentially self-dual (for self-dual RACARs this is shown in [76, 29]; it is explained in [34, §4.3]
why the essentially self-dual case follows). Hence it is known if π′ is a RASCAR.

7.1.3. Statement. Let π̃ be as in Conditions 2.8, of weight λπ, and let α◦
p =

∏
p|p(α◦

p)ep . Recall
K(π̃) from (2.23) and η = η0| · |w from §2.6. Fix h ⩾ vp(α◦

p). In the rest of §7, we will prove:

Theorem 7.6. (a) If π̃ is strongly non-Q-critical at p (see Definition 3.14), then for any K
as in (2.20) there is a point xπ̃(K) ∈ EΩ,h(K) attached to π̃.

(b) Suppose further that π admits a non-zero Deligne-critical L-value at p. At level K(π̃), there
exists an irreducible component in EΩ,h(K(π̃)) through xπ̃(K(π̃)) of dimension dim(Ω).

(c) Suppose further that λπ is H-regular. There exists an (η0, ψ)-Shalika family I (K(π̃)) in
EΩ,h(K(π̃)) of dimension dim(Ω).

(d) Suppose further that ρπ : GF → GL2n(Qp) is irreducible. Then:

(d1) at level K1(π̃), EΩ,h(K1(π̃)) is étale over Ω at xπ̃(K1(π̃)), and the (irreducible) con-
nected component C (K1(π̃)) through xπ̃(K1(π̃)) is an (η0, ψ)-Shalika family;

(d2) at level K(π̃), I (K(π̃)) is the unique Shalika family of EΩ,h(K(π̃)) through xπ̃(K(π̃)).
Moreover the nilreduction of I (K(π̃)) is étale over Ω at xπ̃(K(π̃)).

(e) Suppose further that Local-Global Compatibility holds at all v ∤ p for all RACARs of G.
Then in (d2), I (K(π̃)) is also the unique classical family of EΩ,h(K(π̃)) through xπ̃(K(π̃)).

It is important to be precise about the level K, so we take a maximal (if unwieldy) approach
to notation. If K is completely unambiguous we will drop it from notation.

Remark 7.7. Theorem B of the introduction is a special case of (d1). Indeed, non-Q-critical
slope implies strongly non-Q-critical (Theorem 3.16), and if λπ is regular then it is H-regular (by
definition) and π admits a non-zero Deligne-critical L-value at p (Lemma 7.4), hence Lp(π̃) ̸= 0.
Conjecturally, if π is cuspidal then ρπ is always irreducible.

For the convenience of the reader we summarise the key steps of the proof.

• We first show that specialisation spλπ
: DΩ → Dλπ induces an isomorphism on the π̃-part

of degree t cohomology (Proposition 7.8). The existence of xπ̃(K) follows immediately.
Here we crucially use that t is the top degree of cohomology in which π̃ appears.

• From §6, for each β we have a OΩ-module map Evη0
β : Ht

c(SK ,DΩ) → D(Galp,OΩ), and
the target is torsion-free. When K = K(π̃), we show that this map is non-zero for some
β using Proposition 7.8, the non-vanishing L-value and Theorem 5.22. More generally,
the map is non-zero if Lp(π̃) ̸= 0. Given non-vanishing, we deduce in Corollary 7.12 that
TΩ,h(K(π̃)) is faithful over OΩ locally at xπ̃(K(π̃)), and deduce (b) from this.

• Using evaluation maps and (again) the non-vanishing L-value, we construct an everywhere
non-vanishing rigid function on Ω, whose value at each classical λ is a sum of Friedberg–
Jacquet integrals over the finite set y ∈ w−1(λ) ⊂ EΩ,h(K(π̃)). In Proposition 7.16, we use
this and Proposition 5.15 to deduce (c).
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• We can produce dimension in EΩ,h at level K(π̃), but cannot control the size of the classical
cohomology at this level. However, at level K1(π̃), by (7.1) Ht

c(SK1(π̃),V
∨
λπ

)ϵmπ̃
is a line.

Using commutative algebra we deduce Tϵ
Ω,h(K1(π̃)) is cyclic locally at xπ̃(K1(π̃)). Via

Local-Global Compatibility for RASCARs and p-adic Langlands functoriality, we prove a
‘level-shifting’ result between levels K1(π̃) and K(π̃) in families, giving a precise compati-
bility between EΩ,h(K(π̃)) and E ϵ

Ω,h(K1(π̃)) at π̃. Combining cyclicity at level K1(π̃) with
faithfulness at level K(π̃), we deduce (d). Part (e) follows similarly.

7.2. Proof of Thm. 7.6(a): Existence of xπ̃(K). Recall t, from (2.6), is the top degree of
classical cohomology to which π contributes. If π̃ is non-Q-critical, then by Theorem 3.16

Ht
c(SK ,Dλπ

)mπ̃
∼= Ht

c(SK ,Vλπ
)mπ̃

,

which does not vanish as πKf ̸= 0. Thus π̃ contributes to Ht
c(SK ,Dλπ

). The character ψπ̃ :
H⊗ E → E from Definition 2.9 induces a character H⊗OΩ → OΩ, and thus a map

H⊗OΩ −→ OΩ −→ OΩ/mλπ = L, (7.4)

where mλπ
is the maximal ideal corresponding to λπ. We also write mπ̃ for the kernel of this

composition. This is a maximal ideal of H⊗OΩ, whose contraction to OΩ is mλπ
.

For any sufficiently large h, the localisation Ht
c(SK ,DΩ)⩽hmπ̃ is independent of h, and in a slight

abuse of notation, we denote this Ht
c(SK ,DΩ)mπ̃ . As Ht

c(SK ,DΩ)⩽h is finitely generated, we may
freely use Nakayama’s lemma.

Let
TΩ,π̃(K) = [TΩ,h(K)]mπ̃

be the localisation of TΩ,h(K) at mπ̃, which acts on Ht
c(SK ,DΩ)mπ̃

. Let Λ denote the localisation
of OΩ at mλπ . Theorem 7.6(a) follows from:

Proposition 7.8. The map spλπ
: DΩ → Dλπ induces an isomorphism

Ht
c(SK ,DΩ)mπ̃ ⊗Λ Λ/mλπ

∼−→ Ht
c(SK ,Dλπ )mπ̃ . (7.5)

In particular, mπ̃ is a maximal ideal of TΩ,h(K) and hence there exists a point xπ̃ ∈ EΩ,h(K).

Proof. As Ω ⊂ W Q
λπ

is smooth, we may choose a regular sequence of generators T1, . . . , Tm of
mλπ . For j = 1, . . . ,m let

Ωj ..= Sp(OΩ/(T1, ..., Tj));

then
Ω = Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωm = {λπ}

is a strictly descending sequence of closed affinoid subsets of Ω containing λπ. Let Λj be the
localisation of OΩj

at mλπ
, noting that Λ0 = Λ and Λm = L. We first prove a vanishing result.

Lemma. For any i ⩾ t+ 1, and any j = 0, . . . ,m, we have

Hi
c(S,DΩj

)mπ̃
= 0.

Proof of lemma. We proceed by descending induction on j. The case j = m follows from non-Q-
criticality; indeed if Hi

c(S,Dλπ
)mπ̃
̸= 0, then π̃ appears in classical cohomology in degree i from

Definition 3.14. But i > t is greater than the top such degree (see (2.6)), which is a contradiction.
Now suppose the lemma holds for j + 1. As

DΩj/Tj+1DΩj = DΩj ⊗OΩj
OΩj+1

∼= DΩj+1 ,
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where the last isomorphism is Remark 3.12, we have a short exact sequence

0→ DΩj

×Tj+1

−−−−−→ DΩj
−→ DΩj+1 → 0, (7.6)

yielding a long exact sequence of cohomology. We pass to small slope subspaces and then localise
at mπ̃; since these are exact functors, truncating at degree i we get an injection

0→ Hi
c(S,DΩj

)mπ̃
⊗Λj

Λj/(Tj+1) −→ Hi
c(S,DΩj+1)mπ̃

.

By the induction step, we deduce that Hi
c(S,DΩj )mπ̃ ⊗Λj

Λj/(Tj+1) = 0. From Nakayama’s
lemma, the result follows for j, completing the induction.

We return to the proof of Proposition 7.8. Let j ∈ {0, . . . ,m − 1}. Again truncating and
localising the long exact sequence of cohomology attached to (7.6), we obtain an exact sequence

0→ Ht
c(SK ,DΩj

)mπ̃
⊗Λj

Λj/(Tj+1) −→ Ht
c(SK ,DΩj+1)mπ̃

−→ Ht+1
c (S,DΩj

)mπ̃
.

But the last term is zero by the lemma, showing there is an isomorphism

Ht
c(SK ,DΩj

)mπ̃
⊗Λj

Λj/(Tj+1) ∼= Ht
c(SK ,DΩj+1)mπ̃

.

The isomorphism (7.5) follows from descending induction on j.
For the last claim, we have Ht

c(SK ,DΩ)mπ̃ ̸= 0 by combining non-Q-criticality and (7.5).
This is equivalent to mπ̃ appearing in TΩ,h(K), from which we deduce the existence of the point
xπ̃(K).

We would also like an analogue of [11, Lem. 2.9(ii)], to show that Ht
c(SK ,DΩ)mπ̃ is OΩ-torsion-

free. However the proof of that result does not work here, as the cohomology is not concentrated
in one degree. A key novelty of this paper is the use of evaluation maps to overcome this.

Remark 7.9. All we used to prove Proposition 7.8 was non-Q-criticality and cohomological
vanishing above the top degree t. Thus for any non-Q-critical Hecke eigensystem attached to a
Q-refined RACAR π′ of G(A) of weight λ, we see that spλ induces an isomorphism

Ht
c(SK ,DΩ)mπ̃′ ⊗OΩ,λ

OΩ,λ/mλ ∼−→ Ht
c(SK ,Dλ)mπ̃′ .

7.3. Proof of Thm. 7.6(b): Components of maximal dimension. Let

C (K) = Sp(TΩ,C (K)) ⊂ EΩ,h(K)

be the connected component containing xπ̃(K). There exists an idempotent e such that
TΩ,C (K) = eTΩ,h(K) is a direct summand, with C = Sp(TΩ,C (K)); then

Ht
c(SK ,DΩ)⩽h ⊗TΩ,h(K) TΩ,C (K) = eHt

c(SK ,DΩ)⩽h (7.7)
⊂ Ht

c(SK ,DΩ)⩽h.

Now fix K = K(π̃) from (2.23) and for convenience let

C = C (K(π̃)), TΩ,C = TΩ,C (K(π̃)) and xπ̃ = xπ̃(K(π̃)).

Let Φπ̃ ∈ Ht
c(SK(π̃),Dλπ

)mπ̃
be the class from Definition 6.22. By Proposition 7.8, we can lift

this to a class Φ′
C ∈ Ht

c(SK(π̃),DΩ)⩽hmπ̃ under the natural surjection spλπ
. Possibly shrinking Ω

65



p-adic L-functions in Shalika families Barrera Salazar, Dimitrov and Williams

and C , we may avoid denominators in TΩ,C , and assume Φ′
C ∈ Ht

c(SK(π̃),DΩ)⩽h; then applying
the idempotent e attached C , we define

ΦC
..= eΦ′

C ∈ Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h

TΩ,C . (7.8)

As shrinking Ω and applying e doesn’t change local behaviour at π̃, we still have spλπ
(ΦC ) = Φπ̃.

The following is the key step in all our constructions; we are very grateful to Eric Urban,
who suggested the elegant proof we present here. Recall Evη0

β from (6.15).

Proposition 7.10. Suppose there exists β such that Evη0
β (Φπ̃) ̸= 0. Then AnnOΩ(ΦC ) = 0, and

in particular,
Ht

c(SK(π̃),DΩ)⩽h ⊗TΩ,h
TΩ,C is a faithful OΩ-module.

Proof. By restricting the evaluation map of (6.15) to the summand (7.7), we get a map

Evη0
β : Ht

c(SK(π̃),DΩ)⩽h ⊗TΩ,h
TΩ,C → D(Galp,OΩ) (7.9)

of OΩ-modules. From Proposition 6.15, we have

spλπ
(Evη0

β (ΦC )) = Evη0
β (spλπ

(ΦC )) = Evη0
β (Φπ̃).

The right-hand side is non-zero by hypothesis, so we deduce that Evη0
β (ΦC ) ̸= 0.

Now let u ∈ OΩ such that uΦC = 0. Since Evη0
β is an OΩ-module map, we see

0 = Evη0
β (uΦC )

= uEvη0
β (ΦC ) ∈ D(Galp,OΩ).

As Evη0
β (ΦC ) ̸= 0 and D(Galp,OΩ) is OΩ-torsion-free, we see u = 0, from which we conclude.

Corollary 7.11. Suppose there exists β such that Evη0
β (Φπ̃) ̸= 0. Then, at level K(π̃),

(i) the OΩ-algebra TΩ,C is faithful as an OΩ-module, and

(ii) there exists an irreducible component I ⊂ C in EΩ,h through xπ̃ with dim(I ) = dim(Ω).

Proof. The OΩ-action on Ht
c(SK(π̃),DΩ)⩽h is faithful (by Proposition 7.10) and factors through

the action of H⊗OΩ, hence (by definition) the action of TΩ,C . Part (i) follows.
For (ii), as Ht

c(SK(π̃),DΩ)⩽h and TΩ,h are finite OΩ-modules, we deduce there are finitely
many irreducible components of EΩ,h, each of dimension at most dim(Ω). Suppose every compo-
nent I through xπ̃ has dimension dim(I ) < dim(Ω). Then SuppOΩ

(TΩ,C ) (by definition, the
image of C in Ω under the weight map) is a closed subspace of Ω of dimension strictly less than
dim(Ω). In particular it is a proper closed subspace. But by [46, Prop. 4.4.2], since TΩ,C is a
faithful OΩ-module, we have SuppOΩ

(TΩ,C ) = Ω, so we conclude by contradiction.

Corollary 7.12. Suppose π admits a non-zero Deligne-critical L-value at p. Then (at level
K(π̃)) there exists an irreducible component I in EΩ,h through xπ̃ such that dim(I ) = dim(Ω).

Proof. By hypothesis (Definition 7.3) there exists β with βp ⩾ 1 for all p|p, a character χ of
conductor pβ , and j ∈ Crit(λπ) such that L(π × χ, j + 1

2 ) ̸= 0. By Theorem 6.23, for an explicit
(non-zero) constant (∗) we have

(α◦
p)−β

∫
Galp

χ χjcyc · Evη0
β (Φπ̃) =.. Lp(π̃, χχjcyc)

= (∗)L(p)(π ⊗ χ, j + 1
2 ) ̸= 0.

Thus Evη0
β (Φπ̃) ̸= 0. We conclude by Corollary 7.11(ii).
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7.4. Proof of Thm. 7.6(c): (very) Zariski-density of Shalika points. We still take
K = K(π̃).

Lemma 7.13. If λπ is H-regular in the sense of (7.3), then any neighbourhood Ω of λπ in W Q
λπ

contains a very Zariski-dense set of regular algebraic dominant weights.

Proof. Write λπ = (λ′
π, λ

′′
π) as a weight for H. If a weight λ ∈ W Q

λπ
is of the form

λ = (λ′
π + (a, ...a), λ′′

π + (b, ..., b)),

where a, b ∈ ZΣ are weights for ResOF /Z(GL1) with aσ ⩾ bσ for all σ ∈ Σ, then λ is algebraic
dominant and H-regular. The set of such λ is very Zariski-dense in W Q

λπ
.

Moreover, such a weight is regular if aσ > bσ for all σ, as then λπ,n,σ + aσ > λπ,n+1,σ + bσ.
We conclude since aσ = bσ is a closed condition.

Recall we fixed h ∈ Q⩾0. Now let Ωncs be the subset of weights λ ∈ Ω such that

(i) λ is algebraic, dominant and regular, and
(ii) ep(σ)h < 1 + λσ,n − λσ,n+1 for all σ ∈ Σ (in particular, h is a non-Q-critical slope for λ).

Since failure of (ii) is a closed condition, Ωncs is very Zariski-dense in Ω by Lemma 7.13.

Proposition 7.14. Suppose π̃ is strongly non-Q-critical and λπ is H-regular. Let I = Sp(TΩ,I )
be any irreducible component in EΩ,h(K(π̃)) such that

• I contains xπ̃(K(π̃)), and

• dim(I ) = dim(Ω).

Then the classical cuspidal non-Q-critical points are very Zariski-dense in I .

Proof. Let Incs ..= I ∩w−1(Ωncs). By [19, Prop. 5.15] (and its proof), Incs is very Zariski-dense
in I and every y ∈ Incs is classical cuspidal non-Q-critical, from which the result follows.

In the proof of Theorem 7.6(c), we need a lemma. Note w−1(λ) ∩ C is a finite set for all
λ ∈ Ω.

Lemma 7.15. Let C be as in §7.3 and λ ∈ Ωncs. Reduction modulo mλ induces an isomorphism

Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h(K(π̃)) TΩ,C /mλ ∼=

⊕
y∈w−1(λ)∩C

Ht
c(SK(π̃),Dλ)my

.

Proof. This is local at λ ∈ W Q
λπ

, so we are free to shrink Ω to a neighbourhood of λ with

C =
⊔
y∈w−1(λ)∩C Cy,

with each Cy = Sp(Ty) connected affinoid, and with w−1(λ) ∩ Cy = {y}. Note that C itself can
be disconnected over this smaller Ω. As

TΩ,C = ⊕y∈w−1(λ)∩C Ty,

we have

Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h(K(π̃)) TΩ,C /mλ

∼=
⊕

y∈w−1(λ)∩C

Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h(K(π̃)) Ty/mλ.
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As y is the unique point of Cy above λ, in each summand of the right-hand side, reduction mod
mλ factors through localisation at my; and since Cy is the connected component through y, each

Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h

Ty ⊂ Ht
c(SK(π̃),DΩ)

is a summand, and

[Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h

Ty]my = Ht
c(SK(π̃),DΩ)my

.

Thus

Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h(K(π̃)) Ty/mλ ∼= Ht

c(SK(π̃),DΩ)my ⊗Λ Λ/mλ
∼= Ht

c(SK(π̃),Dλ)my ,

where the last isomorphism is Proposition 7.8, as each such y has non-Q-critical slope (since
λ ∈ Ωncs). Combining the last two displayed equations gives the Lemma.

We now complete the proof of Theorem 7.6(c). Recall C is the connected component of
EΩ,h(K(π̃)) containing xπ̃, and let Cnc denote the set of classical cuspidal non-Q-critical points
y ∈ C . Let C Sha

nc be the subset of points y ∈ Cnc such that πy admits a global (η0| · |wy , ψ)-Shalika
model, where wy is the purity weight of λy = w(y). Theorem 7.6(c) then follows from:

Proposition 7.16. Suppose the hypotheses of Theorem 7.6(c). Up to shrinking Ω, there is an
irreducible component I ⊂ C ⊂ EΩ,h(K(π̃)) such that:

• I contains xπ̃(K(π̃)),

• dim(I ) = dim(Ω), and

• I ∩ C Sha
nc is very Zariski-dense in I .

Proof. Let C Sha be the Zariski-closure of C Sha
nc in C . We claim:

Claim 7.17. w(C Sha
nc ) is a (very) Zariski-dense subset of Ω.

The claim implies that w(C Sha) = Ω, that is C Sha has full support in Ω. Given this, we
conclude that C Sha has an irreducible component I of dimension dim(Ω), as EΩ,h(K(π̃)) has
finitely many irreducible components (see Corollary 7.11). Then I satisfies the conditions we
require. Thus the proposition follows from the claim.

Proof of claim. Fix a character χ of conductor pβ and j ∈ Crit(λπ) such that L(p)(π⊗χ, j +
1
2 ) ̸= 0 (which exist by hypothesis). Considering χχjcyc ∈ A(Galp,OΩ) via the structure map
L→ OΩ, define

EvΩ
χ,j : Ht

c(SK(π̃),DΩ) −→ OΩ

Φ 7−→
∫

Galp

χχjcyc · Evη0
β (Φ),

for Evη0
β as in (6.15). Restricting under (7.7), EvΩ

χ,j defines a map Ht
c(SK(π̃),DΩ)⩽h ⊗TΩ,h

TΩ,C → OΩ, which we can evaluate at the class ΦC from (7.8). By construction spλπ
(ΦC ) = Φπ̃,

so
spλπ

◦ Evη0
β (ΦC ) = Evη0

β (Φπ̃)
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by Proposition 6.15. Thus[
EvΩ

χ,j(ΦC )
]
(λπ) =

∫
Galp

χχjcyc · spλ
(

Evη0
β (ΦC )

)
=
∫

Galp

χχjcyc · Evη0
β (Φπ̃) ̸= 0,

where non-vanishing follows as in the proof of Corollary 7.12. As the non-vanishing locus is
open, up to shrinking Ω we may assume that EvΩ

χ,j(ΦϵC ) ∈ OΩ is everywhere non-vanishing.
Now let λ be any weight in Ωncs, the set from §7.4. Since EΩ,h(K(π̃)) is finite over Ω, the

preimage w−1(λ) ∩ C is a finite set. From Lemma 7.15, for λ ∈ Ωncs we may write

spλ(ΦC ) = ⊕yΦy, (7.10)

with each Φy ∈ Ht
c(SK(π̃),Dλ)my . Recalling ry from (3.10), for each such y, we have

rλ(Φy) = ⊕ϵrλ(Φϵy) ∈
⊕
ϵ

Ht
c(SK(π̃),V

∨
λ )ϵmy

= Ht
c(SK(π̃),V

∨
λ )my

,

projecting into the decomposition over ϵ of §2.3.4. Now by combining Proposition 6.15 and
Lemma 6.18, we have a commutative diagram

Ht
c(SK(π̃),DΩ)ϵ

EvΩ
χ,j //

rλ◦spλ

��

OΩ

spλ

��
Ht

c(SK(π̃),V
∨
λ )ϵ

Ej,η0
χ // L.

Combining this with (7.10), and the fact that EvΩ
χ,j(ΦC ) is everywhere non-vanishing, we deduce

[EvΩ
χ,j(ΦC )](λ) =

∑
y∈w−1(λ)∩C

∑
ϵ

Ej,η0
χ

(
rλ(Φϵy)

)
̸= 0.

Hence at least one of the terms in the sum is non-zero. By Proposition 5.15, we deduce that if
this term corresponds to the point y, then πy admits an (η0| · |w, ψ)-Shalika model (where w is
the purity weight of λ). Thus above each λ ∈ Ωncs, there exists at least one classical point y ∈ C

corresponding to an automorphic representation πy admitting a Shalika model. In particular,
we deduce that Ωncs ⊂ w(C Sha

nc ). Thus w(C Sha
nc ) is very Zariski-dense in Ω, as required.

7.5. Proof of Thm. 7.6(d–e): Étaleness of Shalika families. At this point we perform
a delicate switch in level to prove Theorem 7.6(d–e). Fix ϵ ∈ {±1}Σ. A key fact about the level
K1(π̃) from (7.2) is the following:

Proposition 7.18. The vector space Ht
c(SK1(π̃),V

∨
λπ

)ϵmπ̃
is 1-dimensional.

Proof. The mπ̃-torsion in π
K1(π̃)
f is a line; locally, this follows for v ∤ p by (7.1), and for p|p by

(2.18). By Proposition 2.3,

dimQp
Ht

c(SK1(π̃),V
∨
λπ

(Qp))ϵmπ̃
= 1.

We descend to L via §2.10.

Recall Λ = OΩ,λπ
is the algebraic localisation. Taking ϵ-parts of Proposition 7.8 gives iso-

morphisms

Ht
c(SK1(π̃),DΩ)ϵmπ̃

⊗Λ Λ/mλπ
∼= Ht

c(SK1(π̃),Dλπ
)ϵmπ̃

(7.11)
∼= Ht

c(SK1(π̃),V
∨
λπ

)ϵmπ̃
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of 1-dimensional vector spaces (where the second isomorphism is non-Q-criticality). In particular,
there exists a point xϵπ̃(K1(π̃)) in E ϵ

Ω,h(K1(π̃)) corresponding to π̃. Let

Tϵ
Ω,π̃(K1(π̃)) = Tϵ

Ω,h(K1(π̃))mπ̃ ,

which acts on Ht
c(SK1(π̃),DΩ)⩽h,ϵmπ̃ (see Definition 2.9).

Proposition 7.19. There exists a proper ideal Iϵπ̃ ⊂ Λ such that

Tϵ
Ω,π̃(K1(π̃)) ∼= Λ/Iϵπ̃.

Proof. Since Ht
c(SK1(π̃),DΩ)⩽h is a finitely generated OΩ-module, Ht

c(SK1(π̃),DΩ)ϵmπ̃
is finitely

generated over Λ; then Nakayama’s lemma applied to (7.11) implies that Ht
c(SK1(π̃),DΩ)ϵmπ̃

is
non-zero and generated by a single element over Λ. In particular, it is isomorphic to Λ/Iϵπ̃ for
some proper ideal Iϵπ̃ ⊂ Λ. Now, we know that Tϵ

Ω,π̃(K1(π̃)) is the image of the Hecke algebra in

EndΛ
(
Ht

c(SK1(π̃),DΩ)ϵmπ̃

) ∼= EndΛ(Λ/Iϵπ̃) ∼= Λ/Iϵπ̃.

But this image contains 1, so Tϵ
Ω,π̃(K1(π̃)) must be everything, giving the result.

To prove (d) and (e), we will combine Proposition 7.19 with Corollary 7.11(i) (which implies
TΩ,π̃(K(π̃)) is Λ-torsion free). To switch between levels K(π̃) and K1(π̃), recall the connected
component C (K(π̃)) from §7.3, and:

• Let C lgc
nc (K(π̃)) be the set of classical cuspidal non-Q-critical points y ∈ C (K(π̃)) such

that Local-Global Compatibility holds for πy at all v. Note (as explained in §7.1.2) that
C Sha

nc (K(π̃)) ⊂ C lgc
nc (K(π̃)).

• Let C lgc(K(π̃)) be the Zariski-closure of C lgc
nc (K(π̃)), equipped with the induced reduced

rigid analytic structure. This contains (the nilreductions of) all Shalika families through
xπ̃(K(π̃)), so by Proposition 7.16, it contains an irreducible component of dimension
dim(Ω).

In the next subsection, we prove:

Proposition 7.20. Let π̃ satisfy the hypotheses of Theorem 7.6(a–c), and suppose ρπ is irre-
ducible. Then, up to shrinking Ω, for all y ∈ C lgc

nc (K(π̃)) and for all v ∈ S, the Whittaker
conductors of πv and πy,v are equal. In particular, πK1(π̃)

y,f ̸= 0.

Corollary 7.21. For any ϵ ∈ {±1}Σ there exists a closed immersion

ι : C lgc(K(π̃)) ↪→ E ϵ
Ω,h(K1(π̃))

sending xπ̃(K(π̃)) to xϵπ̃(K1(π̃)).

Proof. This is a straightforward application of [55, Thm. 3.2.1], with the same Hecke algebra
H and weight space Ω (by Remark 3.5) on both sides, with the identity maps between them.
To apply this, it suffices to prove that we have this transfer on a Zariski-dense set of points.
The subset of y ∈ C lgc

nc (K(π̃)) that have non-Q-critical slope is Zariski-dense in C lgc(K(π̃)).
For such y, by Proposition 7.20 and (2.11), we know Ht

c(SK1(π̃),V
∨
λ )ϵmy

̸= 0; then by (7.11) (cf.
Proposition 7.8, Remark 7.9) there is a point y(K1(π̃)) ∈ E ϵ

Ω,h(K1(π̃)) attached to the same
Hecke eigensystem as y. The transfer is then y 7→ y(K1(π̃)) on the (Zariski-dense) subset of
non-Q-critical slope y.

Corollary 7.22. Let π̃ satisfy the hypotheses of Theorem 7.6(a–d), and let ϵ ∈ {±1}Σ. Then
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(i) The weight map E ϵ
Ω,h(K1(π̃))→ Ω is étale at xπ̃(K1(π̃)).

(ii) The natural map E ϵ
Ω,h(K1(π̃)) ↪→ EΩ,h(K1(π̃)) is locally an isomorphism at xπ̃(K1(π̃)).

(iii) The weight map EΩ,h(K1(π̃))→ Ω is étale at xπ̃(K1(π̃)).

Proof. (i) It suffices to prove that the ideal Iϵπ̃ from Proposition 7.19 is zero. Suppose it is
not; then every irreducible component of E ϵ

Ω,h(K1(π̃)) through xϵπ̃(K1(π̃)) has dimension less
than dim(Ω). But C lgc(K(π̃)) has a component of dimension dim(Ω) through xϵπ̃(K(π̃)) by the
discussion before Proposition 7.20; under ι this maps to a component of dimension dim(Ω), which
is a contradiction.

(ii) Let ϵ ̸= ϵ′, and C ϵ,C ϵ′ be the connected components through π̃ of E ϵ
Ω,h(K1(π̃)) and

E ϵ′

Ω,h(K1(π̃)) respectively. By above, C ϵ and C ϵ′ are étale over Ω and contain Zariski-dense
sets C ϵ

nc,C
ϵ′

nc of points corresponding to the same set of Q-refined RACARs {π̃y}y. By another
application of [55, Thm. 3.2.1], there exist closed immersions

C ϵ ↪→ C ϵ′
↪→ C ϵ

over Ω that are the identity on {π̃y}y; hence C ϵ and C ϵ′ are canonically identified, and C ϵ is
independent of ϵ. At π̃, since the Hecke algebra preserves ϵ-parts in cohomology, this means that

TΩ,π̃(K1(π̃)) = Tϵ
Ω,π̃(K1(π̃))

as Λ-modules, and part (ii) follows. Part (iii) is immediate from (i) and (ii).

Modulo Proposition 7.20, this proves Theorem 7.6(d1). For (d2), let C Sha(K(π̃))red be the
nilreduction of C Sha(K(π̃)). By the discussion before Proposition 7.20, and Corollary 7.21, we
have a diagram

C Sha(K(π̃))red ⊂

))

C lgc(K(π̃))

��

� � ι // E ϵ
Ω,h(K1(π̃))

uuΩ

.

As C Sha(K(π̃))red contains an irreducible component of dimension dim(Ω), and E ϵ
Ω,h(K1(π̃)) is

étale over Ω, we deduce C Sha(K(π̃))red is étale over Ω; hence C Sha(K(π̃)) contains a unique
irreducible component, giving (d2). If Local-Global Compatibility holds for all RACARs, then
C lgc(K(π̃)) = C (K(π̃))red, and the same argument shows this is étale over Ω, giving (e).

7.6. Level-switching: local constancy of conductors. It remains to prove Proposi-
tion 7.20. We use Galois theory. Let y ∈ C lgc

nc (K(π̃)), with attached p-adic Galois representation

ρπy : GF → GL2n(L) ⊂ GL2n(Qp),

depending on ιp : C ∼= Qp. Attached to πy and v ∈ S, we have

• the Whittaker conductor m(πy,v) from (7.1), and
• the Artin conductor a(ρπy |GFv

) of the restriction of ρπy to GFv , defined by Serre in [74].

Proposition 7.23. If y ∈ C lgc
nc (K(π̃)), then for any v ∤ p, we have m(πy,v) = a(ρπy

|GFv
).

Proof. Let m and a denote the conductors. Let ρy,v = ρπy
|GFv

, and WD(ρy,v) its associated
Weil–Deligne representation. By Local-Global Compatibility (see §7.1.2) we have

WD(ρy,v)F−ss = ιprecFv
(πy,v ⊗ | · |(1−n)/2).

Fix an unramified non-trivial additive character ψv of Fv and let qv = #Ov/ϖv. Then:
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– ρy,v and WD(ρy,v)F−ss have the same Artin conductor a (e.g. [80, §8]);

– the map recFv
preserves ε-factors [48], so ε(s, πy,v| · |(1−n)/2, ψv) = ε(s,WD(ρy,v), ψv);

– by [78, (3.4.5)], we have ε(s,WD(ρy,v), ψv) = C · q−as
v for C ∈ C× independent of s;

– by [51, (1),Thm. §5], ε(s, πy,v| · |(1−n)/2, ψv) = ε(s+ (1− n)/2, πy,v, ψv) = C ′ · q−m(1−n)/2
v ·

q−ms
v , for C ′ ∈ C× independent of s.

Hence C = C ′ · q−m(1−n)/2
v and a = m, as required.

The study of m(πy,v) in families is thus reduced to that of a(ρπy
|GFv

), and hence can be
studied via Galois theory. For simplicity, let C lgc = C lgc(K(π̃)) and C lgc

nc = C lgc
nc (K(π̃)).

Lemma 7.24. Suppose ρπ is irreducible. Then possibly shrinking Ω, there exists a Galois rep-
resentation

ρC lgc : GF → GL2(OC lgc)

such that for all y ∈ C lgc
nc , we have ρπy

= ρC lgc (mod my).

Proof. Let ν = (1, 0, ..., 0) ∈ X+
∗ (T2n). For each v /∈ S∪{p|p}, we have a Hecke operator Tν,v ∈ H

as in §2.4. If y ∈ C lgc
nc corresponds to the character Ψy : H⊗ L→ L, then we have

Ψy(Tν,v) = Tr(ρπy (Frobv))

(see e.g. [32, Cor. 7.3.4]). In particular, property (H) of [32, §7.1] holds, where we take av ibid.
to be the image of Tν,v in OC lgc under the natural map. Then by [32, Lem. 7.1.1], there exists a
2n-dimensional Galois pseudo-character

tC lgc : GF → OC lgc

over C lgc such that for all v /∈ S ∪ {p|p} and all y ∈ C lgc
nc , we have

spy(tC lgc(Frobv)) = ρπy
(Frobv).

As ρπ is irreducible, by [22, Lem. 4.3.7], there exists a lift of tC lgc to a Galois representation

ρC lgc : GF → GL2n(OC lgc)

with tC lgc = tr(ρC ); and ρπy = ρC lgc (mod my).

Proposition 7.25. Let v ∈ S with residue characteristic ℓ ̸= p. After possibly shrinking Ω, the
Artin conductor a(ρπy

|GFv
) is constant as y varies in C lgc. Hence Proposition 7.20 holds.

Proof. Let (r,N) = WD(ρC lgc |GFv
) be the family of Weil–Deligne representations associated to

ρC lgc at v [22, Lem. 7.8.14]. By construction, the specialisation (ry, Ny) of (r,N) at y ∈ C lgc

is the Weil–Deligne representation attached to ρπy |GFv
, and then by definition (see [80, §7]), we

have
a(ρπy

|GFv
) = a(ry) + dim

(
rIv
y

)
− dim[ker(Ny) ∩ rIv

y ], (7.12)

with a(ry) the conductor of ry (depending only on ry|Iv ). By [22, Lem. 7.8.17], r|Iv is locally
constant over C lgc, so we can shrink Ω so a(ry) and dim(rIv

y ) are constant as y varies in C lgc.
Now note that since π is essentially self-dual, the specialisation (rx, Nx) = WD(ρπ|GFv

) is
pure. Indeed, it suffices to check this after passing to the base-change Π of π to a quadratic CM
extension F ′/F in which v splits as ww. By [34, Lem. 4.1.4, §4.3] there exists an algebraic Hecke
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character χ over F ′ such that Π′ ..= Π⊗χ is self-dual, and then [29, Thm. 1.2] shows that Π′
w is

tempered, so has pure Weil–Deligne representation. But purity is preserved by algebraic twist.
Combining [22, Prop. 7.8.19] with [71, Thm. 3.1(2)], purity at x implies that for all y in a

neighbourhood of x, we have Nx ∼ Ny in the sense of [22, Defs. 6.5.1, 7.8.2]. This implies that
dim[ker(Ny)∩ rIv

y ] – and hence a(ρπy
|GFv

), by (7.12) – is constant for y in a neighbourhood of x.
Proposition 7.20 now follows by combining this with Proposition 7.23.

7.7. Remarks on symplectic components. The space EΩ,h(K) studied in this section is a
local piece of a global parabolic eigenvariety EQ

λ0
(K) varying over W Q

λ0
, constructed in [19, §5.2].

(Precisely, we take ∗ = t in the notation op. cit.; that is, this is a ‘top degree’ eigenvariety). Here
λ0 is any algebraic weight in Ω. We have described its local geometry at certain Shalika points.
We now comment on global implications, proving:

Theorem 7.26. Let I ⊂ EQ
λ0

(K) be an irreducible component, where K is some parahoric-at-p
level. Suppose I contains a Shalika point xπ̃ attached to a Q-refined RASCAR π̃ that is spherical
and regular at p and satisfies the hypotheses (a–d) of Theorem 7.6, and that K = K1(π̃). Then
every classical point of I with non-Q-critical slope and regular weight is a Shalika point.

We will prove (in Theorem 7.34) a stronger result. Let G ..= ResF/QGSpin2n+1 be the split
spin group. If π̃y is a Shalika point in I , then πy is the functorial transfer of a RACAR Πy

of G(A) (see §1.1). By [14, §3.1], there is a refinement Π̃y of Πy corresponding to π̃y. We
show there is an irreducible component I G in a parabolic eigenvariety for G, and rigid analytic
maps between the (nilreductions) of I and I G that interpolate the correspondence π̃y ↔ Π̃y

and induce bijections on their sets of points. Thus every eigensystem in I , classical or not,
is symplectic, a functorial transfer from G. For non-Q-critical slope classical points of regular
weight, symplectic is equivalent to Shalika (see Proposition 7.33), so the theorem follows.

The proof occupies the rest of this section; we sketch it now. One has a natural map from the
Hecke algebra for G to that for G, compatible with Langlands functoriality, induced by a map
ȷ∨ on cocharacters. It also admits a natural section ι∨. Using ι∨, and properties of Langlands
functoriality, one can transfer a Zariski-dense set of Shalika points in I from the eigenvariety
for G to that for G. Using an idea of Chenevier, this interpolates to a map f on the nilreduction
of I . Let I G be the irreducible component containing the (irreducible) image. Applying the
same argument in reverse, with ȷ∨, gives a map g the other way inverse to f on points.

Remark 7.27. A more detailed study of these phenomena, for all parahoric levels, is the subject
of [14]. As a flavour: in the Iwahori-level eigenvariety, the analogue of Theorem 7.26 (for classical
points) should hold, but the stronger analogue (on non-classical points) should not. In the
language op. cit., take a non-critical slope Iwahori refinement of π that is optimally Q-spin. This
varies in a dn+1-dimensional component I in the Iwahori eigenvariety, but the symplectic locus
is a closed d+ 1-dimensional subspace. In [14] we conjecture that the classical points in I lie in
the symplectic subspace; but there should exist non-classical non-symplectic points in I .

7.7.1. Hecke algebras for G and G. Fix a Borel pair (B, T ) in G, as in [14, §2]. Attached to
Q ⊂ G is a parabolic Q ⊂ G, described in [14, §2.1]. Let Jp be the associated parahoric subgroup.
Let U◦

p be the associated normalised Hecke operator (U◦
p,n in the notation op. cit.).

Let S be the set of finite primes v ∤ p where Kv is not maximal hyperspecial, and let K =∏
v Kv ⊂ G(AF,f ) be open compact such that Kv is maximal hyperspecial for every v ̸∈ S∪{p|p},

sufficiently small at v ∈ S, and Kp = Jp. Let (HG)′ = Qp[Tν,v : ν ∈ X+
∗ (T ), v ̸∈ S ∪ {p|p}] be

the spherical Hecke algebra for K, where X+
∗ (T ) is the space of B-dominant cocharacters of T

and Tν,v = [Kvν(ϖv)Kv] (as in Definition 2.1). Let HG = (HG)′[U◦
p : p|p].
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Henceforth replace the Z-module H (from §2.9) with H ⊗Z Qp. In [14, §2], a map ȷ∨ :
X∗(T )→ X∗(T ) is defined. This induces a map

ȷ∨ : H → HG , U◦
p 7→ U◦

p , Tν,v 7→ Tȷ∨(ν),v.

In the other direction, there is a natural ‘section’

ι∨ : X∗(T ) −→ X∗(T )⊗Z Z[1/n]

such that ι∨ ◦ ȷ∨ is the identity, given in the notation op. cit. by

ι∨(f∗
i ) = e∗

i , ι∨(f∗
0 ) = (e∗

1 + · · ·+ e∗
n)/n.

The denominator means this does not, however, induce a map HG → H. To get around this, for
v ̸∈ S ∪ {p|p} let

Zv ..= Te∗
1+···+e∗

n,v
= [Kvdiag(ϖv, ..., ϖv)Kv], Zv = Tf∗

0 ,v

be the operators attached to e∗
1 + · · · + e∗

n and f∗
0 respectively. Then ȷ∨(Zv) = Znv . Any map

HG → H induced by ι∨ must send Zv to an nth root of Zv. We now make sense of this.
The operators Zv and Zv act respectively by diag(ϖv, ..., ϖv) and f∗

0 (ϖv), elements of the
centre of G(Fv) and G(Fv) (by [4, Prop. 2.3]). Hence they act by the central character evaluated
at ϖv. If π is a RASCAR of G(A) with an (η, ψ)-Shalika model, then its central character is ηn,
and it is the transfer of a RACAR Π of G(A) whose central character is η (by [4, p.178]).

This observation allows us to formally define an nth root of Zv over the irreducible compo-
nent I . Note (as in Definition 7.2) Zv acts on cohomology at any (η0, ψ)-Shalika point y by[
η0(ϖv)|ϖv|wy

]n. This varies analytically over any affinoid Ω ⊂ W Q
λπ

; let

ηΩ(ϖv) ..= η0(ϖv) · wΩ(|ϖv|) ∈ O×
Ω ,

for wΩ as in (3.7). Note this is well-defined as v ∤ p, so |ϖv| ∈ Z×
p . Then ηΩ(ϖv)n interpolates

the action of Zv on (η0, ψ)-Shalika points πy in I above Ω. Such points are Zariski-dense in I

by Theorem 7.6, so we deduce Zv acts via the functions ηΩ(ϖv)n over all of I .

Definition 7.28. Let zv be a formal variable, and let

H̃ ..= H
[
zv : v ̸∈ S ∪ {p|p}

]
/(Zv − znv ).

We may summarise much of the above discussion via:

Lemma 7.29. The map ȷ∨ : H → HG extends to a surjective map ȷ∨ : H̃ → HG. This map has
a natural section given by

ι∨ : HG → H̃, U◦
p 7→ U◦

p , Tν,v 7→ Tι∨(ν),v.

Proof. The extension is defined by ȷ∨(zv) = Zv. It is surjective as every generator Tν,v and U◦
p

is hit. One sees from the definitions that ι∨ is a section.

Remark 7.30. For affinoids Ω ⊂ WQ
λπ

, and M an H ⊗ OΩ-module upon which Zv acts by
ηΩ(ϖv)n, the action extends to H̃ ⊗ OΩ, where zv acts by ηΩ(ϖv). From above, this is true for
M = Ht

c(SK ,DΩ)⊗OΩ OI , the specialisation of the cohomology to I .
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7.7.2. Eigenvariety data. By [55, Cor. 3.1.5], we may recover I as the eigenvariety attached to
an eigenvariety datum

D = (W Q
0,λπ

,ZI ,M
t
I ,H, ψ)

in the sense of Definition 3.1.1 op. cit. (where the Fredholm hypersurface ZI and degree t

cohomology sheaf M t
I = M ⊗OI are specialised to isolate I ). We define a modified datum

D̃ = (W Q
0,λπ

,ZI ,M
t
I , H̃, ψ̃).

Here H̃ acts on M t
I by Remark 7.30 (giving ψ̃ : H̃ → End(M t

I )). This gives an eigenvariety Ĩ .

Lemma 7.31. The inclusion H ↪→ H̃ induces an isomorphism Ĩ ∼−→ I .

Proof. The image of zv ⊗ 1 ∈ H̃ ⊗OΩ in EndOΩ(Ht
c(SK ,DΩ)⊗OΩ OI is, by definition, equal to

1⊗ ηΩ(ϖv), which is also in the image of H⊗OΩ. As this is the only difference between H̃⊗OΩ

and H⊗OΩ, they have the same image in this endomorphism ring, so the local pieces of I and
Ĩ are the same. As the gluing data in [46, Thm. 4.2.2] depends only the local pieces, not the
abstract Hecke algebra, we conclude.

Finally, as in [19, §5.2.2], at level K there is an eigenvariety datum

DG = (W Q
λπ
,Z G ,M G ,HG , ψG)

which gives the Q-parabolic eigenvariety E G,Q
λπ

(K) for G. (Note that ȷ, from [14, §2], identifies
the Q-parabolic weight space for G with the Q-parabolic weight space for G).

7.7.3. Symplectic points.

Definition 7.32. Let y ∈ EQ
λ0

(K) be a point with corresponding eigensystem ϕy : H → L. We
say x is symplectic if there is a point yG ∈ E G,Q

λ0
(K) for some K, such that ϕy factors as

ϕy : H ȷ∨

−→ HG ϕG
y−−→ L,

where ϕG
y is the eigensystem corresponding to y.

Proposition 7.33. If y ∈ EQ
λ0

(K) is a classical point with non-Q-critical slope and regular
weight, then y is a symplectic point if and only if it is a Shalika point.

Proof. Suppose y is a Shalika point. Let π̃y and Π̃y be as described after the statement of
Theorem 7.26; then ϕy = ϕπ̃y . By compatibility of Langlands functoriality (at v ∤ p) and [14,
Prop. 3.7] (at p|p) ϕπ̃y factors as

ϕπ̃y
: H ȷ∨

−→ HG ϕΠ̃y−−→ L. (7.13)

It remains to show Π̃y appears in an eigenvariety for G. Let K ⊂ G(AF,f ) be open compact as
above (maximal hyperspecial at v /∈ S∪{p|p}, parahoric at p|p) such that ΠK

y ̸= {0}. By [14, §3.5],
the refinement Π̃y has non-Q-critical slope, so by [19, Prop. 5.8], yields a point yG ∈ E G,Q

λπ
(K)

corresponding to ϕΠ̃y
, and y is symplectic.

Conversely, suppose y is symplectic; then by [14, §3.5], yG is non-Q-critical slope in E G,Q
λ0

(K).
Using regular weight, as in the proof of [19, Prop. 5.15], yG is classical cuspidal, corresponding
to some RACAR Πy of G(AF ). At v /∈ S ∪ {p|p}, Πy,v is unramified; by considering the Satake
parameters and using [4, §6] we see that πy,v is the functorial transfer of Πy,v. By [5] this ensures
πy is globally the transfer of Πy. Thus πy admits a Shalika model, as required.
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Theorem 7.34. Let I ⊂ EQ
λ0

(K) be an irreducible component satisfying the conditions of The-
orem 7.26. Then every point of I is a symplectic point.

Proof. We maintain the notation from the proof of Proposition 7.33. By [5, Prop. 5.1], which
controls the image of functorial transfer at ramified places, we may choose K ⊂ G(AF,f ) as above
such that ΠK

y ̸= {0} for all such y; we work at this level for G.
We have the following ‘inverse’ of (7.13); extend ϕπ̃y

to ϕ̃π̃y
: H̃ → L by sending zv 7→

η0(ϖv)|ϖv|wy . As ι∨ is a section of ȷ∨, ϕΠ̃y
factors as

ϕΠ̃y
: HG ι∨−→ H̃

ϕ̃π̃y−−→ L. (7.14)

As in the proof of Proposition 7.16, a neighbourhood U of the given point π̃ contains a Zariski-
dense set of non-Q-critical slope (η0, ψ)-Shalika points y ∈ U . By [37, Lem. 2.2.3], this set is
also Zariski-dense in I . By Proposition 7.33, we have associated points yG ∈ E G,Q

λ0
(K).

Let Ĩ ◦ denote the nilreduction of Ĩ . By [55, Thm. 3.2.1] and (7.14), the map ι∨ induces a
map g : Ĩ ◦ → E G,Q

λπ
(K) interpolating the association y 7→ yG for the Zariski-dense set of (η0, ψ)-

Shalika points y ∈ I . Conversely let I G be the irreducible component containing g(Ĩ ◦), and
I G,◦ its nilreduction. By the same theorem and (7.13), ȷ∨ induces a map f : I G,◦ → I .

As nilreductions do not change closed points, and Ĩ is isomorphic to I by Lemma 7.31, the
maps f and g induce inverse bijections on the sets of closed points in I and I G . By [55, Thm.
3.2.1] again this means every eigensystem in I factors through ȷ∨, and hence is symplectic.

Theorem 7.26 follows immediately by combining Theorem 7.34 with Proposition 7.33.

8. p-adic L-functions over the eigenvariety

Finally we construct p-adic L-functions in families and prove Theorem C of the introduction.
To do so, we pursue a similar overall strategy to that in single weights. In the single weight
situation, namely row (M) of Figure 1 of the introduction, we:

(1) replaced V ∨
λ with a larger coefficient sheaf Dλ and found a single evaluation map Evλ :

Ht
c(SK ,Dλ)→ D(Galp,Qp) interpolating all the Evχ,j ;

(2) exhibited a canonical eigenclass Φπ̃ ∈ Ht
c(SK ,Dλ), constructed via a choice of Friedberg–

Jacquet test vector WFJ
f ∈ Sηf

ψf
(πf ).

In the top row (T) of Figure 1, we instead work over a Shalika family C in the eigenvariety, and
we need to:

(1′) replace Dλ with DΩ and construct an evaluation map EvΩ : Ht
c(SK ,DΩ) → D(Galp,OΩ)

interpolating the maps Evλ as λ varies in Ω;

(2′) exhibit an eigenclass ΦC ∈ Ht
c(SK ,DΩ) over C interpolating, up to Q×

p , the eigenclasses
Φπ̃y

as y varies over Shalika points of C .

This would give the top commutative square in Figure 1. We have already handled part (1′) in
§6, and in this section, we explain how to obtain the eigenclass ΦC of (2′).

In §7, we proved existence and étaleness of Shalika families, but had to consider and compare
two separate levels K(π̃) and K1(π̃) to do so. To vary p-adic L-functions over these families
requires more precise control still, since for (2′) we must show not only that π̃ varies in a
Shalika family, but that specific vectors inside these representations – the cusp forms WFJ

f from
§2.10 – also vary p-adic analytically in this family. In this chapter, we prove such variation if
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π satisfies an automorphic hypothesis (Hypothesis 8.6). This is captured in Theorem 8.11, a
modification/strengthening of Theorem 7.6 tailored for variation of p-adic L-functions. This is
Theorem B′ of the introduction, and is proved in §8.3.

Hypothesis 8.6 is automatic in tame level 1 (that is, when π is spherical at all v ∤ p∞), so
our results are unconditional in this case.

In §8.4, we use Theorem 8.11 to construct the multi-variable p-adic L-function and prove
Theorem C. Finally in §8.5 we give an application of this construction; suppose π̃ satisfies
our running assumptions, and is non-Q-critical but has Q-critical slope. In this case the slope
condition of Proposition 6.25 does not apply, and we could not previously show that Lp(π̃) was
uniquely determined. In §8.5, we show that when the multi-variable p-adic L-function exists,
Lp(π̃) is uniquely determined by interpolation over the family.

An unconditional treatment of higher tame level would require new input from local repre-
sentation theory. We describe these representation-theoretic obstructions in §8.1, and give our
hypothesis to relax the tame level 1 restriction in §8.2. Since these problems are of a very differ-
ent nature to the methods developed in the rest of this paper, we do not attempt to prove this
hypothesis here.

8.1. On the choice of local test vectors. Suppose π̃ satisfies (C1-2) of Conditions 2.8.
Recall from §2.4 that

S = {v ∤ p∞ : πv ramified}.

To vary the cusp form WFJ
f = ⊗vWFJ

v in a p-adic family, we need control on the local vectors
WFJ
v . For this, there are three natural cases:

– v = p | p. At such v, the choice of local vector WFJ
v = Wp is prescribed by the choice of

Q-refinement in condition (C2) of Conditions 2.8.
– v ∤ p∞, and v /∈ S (i.e. πv is spherical). In this case, we have complete control over the

choice of WFJ
v : as outlined in §2.6, the spherical vector in Sηv

ψv
(πv) is a Friedberg–Jacquet

test vector, i.e.

ζv
(
s+ 1

2 ,W
FJ
v , χv

)
= [NF/Q(v)sχv(ϖv)]nδv · L

(
πv ⊗ χv, s+ 1

2
)
. (8.1)

– v ∤ p∞ and v ∈ S (i.e. πv is ramified). In this case, the choice of Friedberg–Jacquet test
vector WFJ

v is not well-understood; the proof of its existence is not constructive.

When S = ∅ (that is, we are in the case of tame level 1), this means we have control on WFJ
v

at every finite place v. In this case, we have

K(π̃) = K1(π̃) =
∏
p|p

Jp
∏
v∤p∞

GL2n(Ov).

Crucially, this means:

Proposition 8.1. Let π̃ be a non-Q-critical Q-refined RACAR satisfying (C1-2) of Condi-
tions 2.8. Suppose π has tame level 1. Then

(1) Sηf

ψf

(
π
K(π̃)
f

)
[[Up − αp : p|p]] is a line, and

(2) this line has a generator
WFJ
f = ⊗p|pWp ⊗v∤p∞ WFJ

v ,

where each Wp is as in (C2) and each WFJ
v is a Friedberg–Jacquet test vector.
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Later in this chapter, we show that these two properties imply WFJ
f varies analytically over

the eigenvariety from §7. This allows us to construct a p-adic L-function over any tame level 1
eigenvariety.

For ramified πv, finding an explicit Friedberg–Jacquet test vector WFJ
v is an interesting and

difficult research question in local representation theory, of a very different flavour to the p-adic
methods and results of the present paper. To generalise our constructions to higher tame level,
at v ∈ S we want to show something like:

(1′) there is an explicit open compact subgroup Kv ⊂ GL2n(Ov), and a 1-dimensional subspace
of πKv

v cut out as the generalised eigenspace of a family of Hecke operators;
(2′) the image of a generator of this line under Sηv

ψv
is a Friedberg–Jacquet test vector in the

Shalika model for πv.

The theory of Whittaker new vectors, as described in (7.1), gives an unconditional source of
explicit Kv such that (1′) is satisfied (without needing to use any Hecke operators). Evidence of
some natural compatibility between the Whittaker and Shalika models is provided by a recent
result of Grobner–Matringe [44]. There, it is shown that if ηv is unramified, and Wv ∈ Sηv

ψv
(πv) is

fixed by K1,v(m(πv)) – that is, Wv is the image of a Whittaker new vector in the Shalika model
– then Wv(12n) ̸= 0. The natural question of whether such a Wv is a Friedberg–Jacquet test
vector, however, appears very difficult to check.

8.2. Shalika new vectors. It is natural to ask if there is a Shalika analogue of the theory of
Whittaker new vectors. In §8.2.1, we introduce a theory of Shalika new vectors, and in §8.2.2,
give examples to show our theory is non-empty. In §8.2.3 we hypothesise that Shalika new vectors
are Friedberg–Jacquet test vectors.

8.2.1. Shalika conductors. Let c ⩾ 1 be an integer. Rather than the subgroups K1,v(c) used in
the Whittaker theory, we consider the ‘Q-parahoric’ analogue

Jv(c) ..=
(

GLn(Ov) Mn(Ov)
ϖc
v ·Mn(Ov) GLn(Ov)

)
=
{
g ∈ GL2n(Ov)

∣∣ g (modϖc
v) ∈ Q(Ov/ϖc

v)
}
.

We also set Jv(0) = GL2n(Ov). Note that Jv(1) is just the parahoric subgroup Jv.

Definition 8.2. Suppose πv is an irreducible admissible representation of GL2n(Fv) that admits
an (ηv, ψv)-Shalika model.

(1) The Shalika conductor c(πv) of πv is the smallest c ∈ Z⩾0 (if it exists) such that

Sηv

ψv

(
πJv(c),ηv
v

)
:=
{
Wv ∈ Sηv

ψv
(πv)

∣∣∣Wv(− · k) = ηv(det(k2))Wv(−) ∀k =
(
k1 ∗
∗ k2

)
∈ Jv(c)

}
̸= {0}.

(2) If Sηv

ψv

(
π
Jv(c(πv)),ηv
v

)
is a line, we call a Shalika new vector any generator of this line.

Lemma 8.3. Suppose πv is an irreducible admissible representation of GL2n(Fv) that admits an
(ηv, ψv)-Shalika model. Then the Shalika conductor c(πv) ∈ Z⩾0 exists.

Moreover for any c ⩾ c(πv) one has dim(πJv(c+1),ηv
v ) > dim(πJv(c),ηv

v ).

Proof. As πv admits an (ηv, ψv)-Shalika model, the Friedberg–Jacquet linear functional [41] is a
non-zero element of HomH(Ov)(πv, ηv). AsH(Ov) is compact, one therefore has HomH(Ov)(ηv, πv) ̸=
{0}; that is, there exists a non-zero vector φ ∈ πH(Ov),ηv

v .
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As φ is smooth, there exists some c≫ 0 such that φ is fixed by NQ(ϖc
vOv) and N−

Q (ϖc
vOv).

Let tv = diag(ϖvIn, In). Since Jv(2c) = t−cv NQ(ϖc
vOv)H(Ov)N−

Q (ϖc
vOv)tcv, we deduce t−cv · φ ∈

π
Jv(2c),ηv
v . Thus for c≫ 0, the space in Definition 8.2(1) is non-zero, so the conductor exists.

For the proof of the last claim, to ease notation, we will drop ηv from the exponent. As
π
Jv(c)
v ⊂ πJv(c+1)

v , it suffices to prove that the inclusion is strict.

• If c = 0, then πv is spherical, and dim(πJv(1)
v ) = ( 2n

n ) > 1 (see e.g. [38, §3.1]).

If c ⩾ 1, let φ be an element of πJv(c)
v which we can inductively assume not in π

Jv(c−1)
v .

Suppose that πJv(c+1)
v = π

Jv(c)
v . Note t−1

v · φ ∈ πvt
−1
v Jv(c)tv , and

Jv(c+ 1) ⊂ t−1
v · Jv(c) · tv,

hence
t−1
v · φ ∈ πJv(c+1)

v = πJv(c)
v .

We thus deduce
φ ∈ πtvJv(c)t−1

v
v ,

so φ is fixed by both Jv(c) and tvJv(c)t−1
v , and hence by the group J ′ ⊂ GL2n(Fv) that they

generate. To obtain a contradiction with the assumption that φ /∈ πJv(c−1)
v , it suffices to show

Jv(c− 1) ⊂ J ′. (8.2)

• Suppose c ⩾ 2. Then Jv(c − 1) admits a parahoric decomposition Jv(c − 1) = [Jv(c −
1) ∩ N−

Q (Ov)] · H(Ov)NQ(Ov) = tv[Jv(c) ∩ N−
Q (Ov)]t−1

v · H(Ov)NQ(Ov). This lies in
tvJv(c)t−1

v · Jv(c) ⊂ J ′, as required.

• If c = 1, then observe that

H(Ov)NQ(Ov) ⊂ Jv(1) ⊂ J ′

and
N−
Q (Ov) = tvN

−
Q (ϖvOv)t−1

v ⊂ tvJv(1)t−1
v ⊂ J ′,

hence

(
In−1

0 1
1 0

In−1

)
=
(
In−1

−1 1
1 0

In−1

)(
In−1

1 0
1 1

In−1

)
Both elements in the product are in (??), so this element lies in J ′′, and we are done.

We put the theory of Shalika new vectors in a form closer to Proposition 8.1(1). For c = c(πv),
let

Jηv (c) ..= ker[ηv ◦ det2 : Jv(c)→ C×]

and consider the (diamond) Hecke operators

Sαv
= [Jηv (c) diag(1, . . . , 1, αv) Jηv (c)], αv ∈ O×

v .

Lemma 8.4. Any πv as in Lemma 8.3 admits a Shalika new vector if and only if

dimC πv
Jη

v (c(πv))[Sαv
− ηv(αv) : αv ∈ O×

v

]
= 1. (8.3)

Proof. For αv ∈ O×
v , let tαv

= diag(1, ..., 1, αv). Via det2, one sees that {tαv
: αv ∈ O×

v } contains
a complete set of representatives for Jv(c(πv))/Jηv (c(πv)). Additionally the Hecke operator Sαv

is simply right translation by tαv . Hence (8.3) is a reformulation of Definition 8.2(2).
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8.2.2. Shalika new vectors for parahoric-spherical representations. If πv is spherical, then it has
Shalika conductor 0, and a spherical vector is a Shalika new vector. The following lemma shows
that both possibilities arise even in the simplest case when n = 4 and πv is parahoric-spherical,
i.e. has non-zero vectors fixed by the parahoric subgroup Jv. We are indebted to David Loeffler
for having drawn to our attention that such counter-examples exist, and to Andrei Jorza for
having helped us find some (positive) examples.

Lemma 8.5. Let Stv denote the Steinberg representation of GL2(Fv).

(i) Let πv be the full parabolic induction from Q(Fv) to GL4(Fv) of Stv × Stv. Then πv is
parahoric-spherical and admits a Shalika new vector.

(ii) Let P denote the (1, 2, 1) parabolic of GL4 and let π′
v be the full parabolic induction from

P (Fv) to GL4(Fv) of 1 × Stv × 1. Then π′
v is parahoric spherical but does not admit a

Shalika new vector.

Proof. Let us first observe that both πv and π′
v are ramified representations admitting a Shalika

model for ηv = 1. We realise the Weyl groups WQ and WP as the subgroups of the Weyl group
S4 of GL4 generated respectively by {(12), (34)} and {(23)}. Let {β1, β2, β3} denote the simple
roots of GL4. Note the parabolic subgroups Q and P correspond to the subsets {β1, β3} and
{β2} respectively.

(i) It suffices to show that dimC πJv
v = 1. One can easily check that a set of representatives

of the double coset WQ\S4/WQ is given by W = {(1), (23), (13)(24)}. By [39, §1] the dimension
of πJv

v is given by the number of w ∈ W such that w · {β1, β3} ∩ {β1, β3} = ∅. This is only the
case for w = (23).

(ii) It suffices to show that dimC πJv
v > 1. A set of representatives of the double coset

WP \S4/WQ is given by W
′ = {(1), (123), (1243), (243)}. In this case, there are two elements

w ∈W ′, namely (1) and (1243), for which w · {β1, β3}∩{β2} = ∅. The same argument as above
shows that the space of Jv-invariants in π′

v is 2-dimensional.

We refer the interested reader to [39, §1] for a full classification of the parahoric-spherical
generic representations of GL2n admitting a Shalika model.

8.2.3. A hypothesis on Shalika new vectors. Given the above theory of Shalika new vectors, it
seems natural to make the following hypothesis.

Hypothesis 8.6. Let c ∈ Z⩾0. For any πv admitting a Shalika new vector of conductor c, a
multiple of the latter is also a Friedberg–Jacquet test vector for πv (as in §2.6).

As evidence towards this, we note that Friedberg–Jacquet [41, Prop. 3.2] proved that Hy-
pothesis 8.6 holds for c = 0 (see also §2.6). Further, in [39, §1] it is shown that the πv admitting a
Shalika new vector of conductor c = 1 are precisely the parahoric-spherical representations which
are maximally Steinberg, and further, it is established in [39, §2] that for such πv Hypothesis 8.6
holds provided that πv is regular (i.e., occurs in IndGBθv with θv regular).

8.3. Shalika families, refined.

8.3.1. Set-up: Shalika Hecke algebra and the eigenvariety E S. Let π̃ be a non-Q-critical Q-
refined RACAR of weight λπ satisfying (C1-2) of Conditions 2.8. Recall S = {v ∤ p∞ :
πv ramified}. For the rest of this chapter, we assume that:
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for all v ∈ S, the local representation πv admits a Shalika new vector of conductor
c(πv), and Hypothesis 8.6 holds for c = c(πv).

We emphasise again that this assumption is empty when π has tame level 1.
Given these assumptions, for the rest of the paper we fix a sufficiently large coefficient field

L/Qp as in §2.10, and drop it from notation. We also fix a precise choice of level subgroup

K(π̃) =
∏

p|p Jp ·
∏
v∈S J

η
v (c(πv))

∏
v/∈S∪{p|p} GL2n(Ov) ⊂ G(Af ). (8.4)

Recall the Hecke alegbra H from Definition 2.9. In light of Lemma 8.4, it is necessary to
modify our Hecke algebra by adding the diamond operators Sαv .

Definition 8.7. The Shalika Hecke algebra of level K(π̃) is

HS ..= H[Sαv
: v ∈ S, αv ∈ O×

v ].

This acts on πK(π̃) and H•
c(SK(π̃),−).

We define some modified objects exactly analogous to their incarnations in §7, but with HS

replacing H. Recall ψπ̃ from Definition 2.9 (noting E ⊂ L).

Definition 8.8. Define a character ψS
π̃ : HS ⊗ L −→ L extending ψπ̃ by sending Sαv 7→ η(αv).

Let mS
π̃

..= ker(ψS
π̃) be the associated maximal ideal. For Ω ⊂ W Q

λπ
a neighbourhood of λπ, as in

(7.4) we get an associated maximal ideal, also denoted mS
π̃, in HS ⊗OΩ.

Proposition 8.9. Let π̃ satisfy Conditions 2.8 and assume Hypothesis 8.6 for v ∈ S. For any
ϵ ∈ {±1}Σ,

dimL Ht
c(SK(π̃),V

∨
λπ

)ϵmS
π̃

= 1.

If π̃ is non-Q-critical, then
dimL Ht

c(SK(π̃),Dλπ
)ϵmS

π̃
= 1.

Proof. As in Proposition 7.18, the mS
π̃-torsion in πK(π̃)

f is a line; for v ∈ S, this is by Lemma 8.4
and the assumed existence of a Shalika new vector. We conclude

dimL Ht
c(SK(π̃),V

∨
λπ

)ϵmS
π̃

= 1

exactly as in Proposition 7.18. If π̃ is non-Q-critical, then the rest follows as

H•
c(SK(π̃),Dλπ

)mS
π̃

∼= H•
c(SK(π̃),V

∨
λπ

)mS
π̃

as K∞/K
◦
∞-modules.

Via §3.3, let Ω be an affinoid neigbourhood of λπ in W Q
λπ

such that Ht
c(SK(π̃),DΩ) admits a

slope ⩽ h decomposition with respect to the Up operator.

Definition 8.10. • Let TS
Ω,h be the image of the natural map

HS ⊗OΩ −→ EndOΩ

(
Ht

c(SK(π̃),DΩ)⩽h
)
.

• Let E S
Ω,h

..= Sp(TS
Ω,h).

• For ϵ ∈ {±1}Σ, write TS,ϵ
Ω,h and E S,ϵ

Ω,h when using only ϵ-parts of the cohomology.

• For a classical cuspidal point y ∈ ES
Ω,h (for terminology as in §7.1), we write mS

y
..= mS

π̃y
.

When π has tame level 1, then H = HS , mπ̃ = mS
π̃, E S,ϵ

Ω,h = E ϵ
Ω,h, etc., so these are all the

exactly the same objects as in §7.
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8.3.2. Shalika families, refined: statement. The following is a more precise version of Theorem
B′, refining Theorem 7.6. We recall that we have fixed the level subgroup K(π̃) and coefficient
field L (in §8.3.1), and we drop both from further notation. Let α◦

p =
∏

p|p(α◦
p)ep , and fix

h ⩾ vp(α◦
p) and ϵ ∈ {±1}Σ. By Proposition 8.9, π̃ contributes to Ht

c(SK(π̃),Dλπ
)⩽h.

Theorem 8.11. Let π̃ be non-Q-critical satisfying (C1-2), and suppose that π admits a non-zero
Deligne-critical L-value at p (Definition 7.3), that λπ is H-regular (7.3), and that π̃ is strongly
non-Q-critical (Definition 3.14). Suppose that for all v ∈ S:

– πv admits a Shalika new vector of conductor c(πv), and

– Hypothesis 8.6 holds for c = c(πv).

Then there exists a point xS
π̃ attached to π̃ in E S

Ω,h. Let C be the connected component of E S
Ω,h

through xS
π̃. Then, after possibly shrinking Ω,

• (étaleness) the weight map C → Ω is étale,

• (density of Shalika points) C contains a Zariski-dense set Cnc of classical cuspidal
points y corresponding to non-Q-critical Q-refined RACARs π̃y satisfying (C1-2) of Con-
ditions 2.8,

• (Shalika new vectors in families) for each y ∈ Cnc and for all v ∈ S, πy,v admits a
Shalika new vector of conductor c(πy,v) = c(πv), and

• (family of eigenclasses) for each ϵ ∈ {±1}Σ, there exists a Hecke eigenclass ΦϵC ∈
Ht

c(SK(π̃),DΩ)ϵ such that for every y ∈ Cnc with w(y) = λy, the specialisation spλy
(ΦϵC )

generates Ht
c(SK(π̃),Dλy )ϵmS

y
.

The non-vanishing, H-regular and strongly non-Q-critical hypotheses hold if π̃ has non-Q-
critical slope and λπ is regular (Theorem 3.16, Lemma 7.4), so this implies Theorem B′ of the
introduction. The proof of Theorem 8.11 will occupy the rest of §8.3; it is similar to the methods
of §7, with the addition of some standard arguments, which we highlight.

8.3.3. Cyclicity results. We now prove an analogue of Proposition 7.19 and delocalise to a
neighbourhood. Let TS,ϵ

Ω,π̃ = (TS,ϵ
Ω,h)mS

π̃
denote the localisation of TS,ϵ

Ω,h at mS
π̃ . Recall Λ =

OΩ,mλπ
.

The following is the only place in the proof where we use the existence of Shalika new vectors
at v ∈ S (via Proposition 7.18).

Proposition 8.12. (i) There exists a proper ideal Iπ̃ ⊂ Λ such that

TS,ϵ
Ω,π̃
∼= Λ/Iπ̃.

(ii) The space Ht
c(SK(π̃),DΩ)ϵ

mS
π̃

is free of rank one over TS,ϵ
Ω,π̃.

Proof. Using Proposition 8.9, and arguing exactly as in Proposition 7.19, there exists Iπ̃ such
that

Ht
c(SK(π̃),DΩ)ϵmS

π̃

∼= Λ/Iπ̃,

and hence (i) follows. The actions of Λ and TS,ϵ
Ω,π̃ are compatible, so Ht

c(SK(π̃),DΩ)ϵ
mS

π̃
is free of

rank one over TS,ϵ
Ω,π̃, giving (ii).
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Since Ht
c(SK(π̃),DΩ)mS

π̃
̸= 0, there exists a point xS,ϵ

π̃ ∈ E
S,ϵ
Ω,h attached to π̃.

To construct the eigenclasses ΦϵC of Theorem 8.11, we want to delocalise Proposition 8.12 to a
neighbourhood of xS,ϵ

π̃ in E S,ϵ
Ω,h. For this, it is convenient to work with rigid analytic localisations

instead of the algebraic localisations we have considered thus far. Define

TS,ϵ
Ω,xπ̃

= lim−→
xS,ϵ

π̃ ∈C ⊂E S,ϵ
Ω,h

OC , and Λλπ
= lim−→
λπ∈Ω′⊂Ω

OΩ′ ,

where the limits are over open affinoid neighbourhoods. These are the local rings of the rigid
spaces E S,ϵ

Ω,h and Ω at xS,ϵ
π̃ and λπ respectively. By [27, §7.3.2], the rigid localisation TS,ϵ

Ω,xπ̃
(resp.

Λλπ ) is a faithfully flat algebra over the algebraic localisation TS,ϵ
Ω,π̃ (resp. Λ), and the natural

map induces an isomorphism T̂S,ϵ
Ω,π̃
∼= T̂S,ϵ

Ω,xπ̃
(resp. Λ̂ ∼= Λ̂λπ

) of their completions.

Proposition 8.13. (i) There is an ideal Ixπ̃ ⊂ Λλπ such that

TS,ϵ
Ω,xπ̃

∼= Λλπ/Ixπ̃ .

(ii) Let
C ϵ = Sp(TS,ϵ

Ω,C ) ⊂ E S,ϵ
Ω,h

be the connected component containing xS,ϵ
π̃ . After possibly shrinking Ω ⊂ W Q

λπ
, there exists

an ideal IC ϵ ⊂ OΩ such that
TS,ϵ

Ω,C
∼= OΩ/IC ϵ .

Proof. By exactness of completion, and Proposition 8.12(i), the map Λ̂ → T̂S,ϵ
Ω,π̃ of completed

(algebraic) local rings is surjective. As the completions are isomorphic we deduce

Λ̂λπ
↠ T̂S,ϵ

Ω,xπ̃
.

As E S,ϵ
Ω,h is finite over Ω, we may shrink Ω so that

w−1(w(xS,ϵ
π̃ )) = {xS,ϵ

π̃ },

so the weight map w : C ϵ → Ω is injective at xS,ϵ
π̃ in the sense of [27, §7.3.3, Prop. 4], and that

proposition implies the natural map Λλπ → TS,ϵ
Ω,xπ̃

is surjective. We take Ixπ̃ to be the kernel of
this map, proving (i). Part (ii) follows from (i) and the definition of rigid localisation, as in [11,
Lem. 2.10].

To delocalise Proposition 8.12(ii), note there is a coherent sheaf M on E S,ϵ
Ω,h, with

M (C) = Ht
c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ

Ω,h
OC ,

given by the Hecke action on overconvergent cohomology. Its rigid localisation is

Mxπ̃
= lim−→
xS,ϵ

π̃ ∈C⊂ES,ϵ
Ω,h

Ht
c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ

Ω,h
OC

∼= Ht
c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ

Ω,h
TS,ϵ

Ω,xπ̃
.

Proposition 8.14. Let C ϵ be the connected component from Proposition 8.13. Perhaps after
further shrinking Ω, we have Ht

c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ
Ω,h

TS,ϵ
Ω,C is free of rank 1 over TS,ϵ

Ω,C .
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Proof. We have

Mxπ̃
∼= Ht

c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ
Ω,h

TS,ϵ
Ω,xπ̃

∼=
[
Ht

c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ
Ω,h

TS,ϵ
Ω,π̃
]
⊗TS,ϵ

Ω,π̃
TS,ϵ

Ω,xπ̃

= Ht
c(SK(π̃),DΩ)ϵmS

π̃
⊗TS,ϵ

Ω,π̃
TS,ϵ

Ω,xπ̃
.

By Proposition 8.12(ii), this is free of rank 1 over TS,ϵ
Ω,xπ̃

. We conclude again from [11, Lem. 2.10].

8.3.4. Étaleness of families. We now use Hypothesis 8.6.

Proposition 8.15. (i) Let
C ϵ = Sp(TS,ϵ

Ω,C ) ⊂ ES,ϵ
Ω,h

be as in Proposition 8.14. If Evη0
β (Φϵπ̃) ̸= 0 for some β, then w : C ϵ → Ω is étale.

(ii) If π admits a non-zero Deligne-critical L-value at p with sign ϵ, then w : C ϵ → Ω is étale.

Proof. Let ΦϵC be a generator of Ht
c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ

Ω,h
TS,ϵ

Ω,C over TS,ϵ
Ω,C , normalised so that

spλπ
(ΦϵC ) = Φϵπ̃. Combining Propositions 8.13 and 8.14, we have AnnOΩ(ΦϵC ) = IC ϵ . Exactly as

in Proposition 7.10, the non-vanishing hypothesis gives

0 = AnnOΩ(ΦϵC ) = IC ϵ ,

giving (i). For (ii), we argue exactly as in Corollary 7.12; the sign condition (Definition 7.3) is
now necessary due to the support of Ej,η0

χ (see Theorem 5.22). In (ii) we have used Hypothesis 8.6
for π.

This proof is valid for any ϵ arising as the sign of a non-zero L-value, so if π admits any non-
zero Deligne-critical L-value at p, then Proposition 8.15 holds for some ϵ. In Proposition 8.17,
we will use Proposition 8.15 for one ϵ to deduce it for all ϵ.

Proposition 8.16. Suppose π̃ is strongly non-Q-critical, λπ is H-regular and Evη0
β (Φϵ0

π̃ ) ̸= 0
for some ϵ0, β. Then C ϵ0 contains a Zariski-dense set C ϵ0

nc of classical cuspidal non-Q-critical
points.

Proof. The conditions ensure C ϵ0 → Ω is étale, so dim(C ϵ0) = dim(Ω). We conclude exactly as
in Proposition 7.14 using [19, Prop. 5.15].

Proposition 8.17. Suppose π̃ is strongly non-Q-critical, λπ is H-regular and that Evη0
β (Φϵ0

π̃ ) ̸= 0
for some ϵ0 and some β. Then C ϵ is independent of ϵ ∈ {±1}Σ, in the sense that for any such
ϵ, there is a canonical isomorphism C ϵ0 ∼−→ C ϵ over Ω.

Proof. By Propositions 8.15 and 8.16, C ϵ0 is étale over Ω and C ϵ0
nc ⊂ C ϵ0 is Zariski-dense. Now

let ϵ be arbitrary. At any yϵ0 ∈ C ϵ0
nc of weight λy corresponding to π̃y, by Proposition 2.3 and

non-Q-criticality we have

0 ̸= Ht
c(SK(π̃),V

∨
λy

)ϵmS
y

∼= Ht
c(SK(π̃),Dλy

)ϵmS
y
.

By Remark 7.9, since yϵ0 is cuspidal there exists yϵ ∈ E S,ϵ
Ω,h corresponding to π̃y. As in Corol-

lary 7.22, the map
C ϵ0

nc → E S,ϵ
Ω,h, yϵ0 7→ yϵ
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interpolates to a closed immersion
ιϵ : C ϵ0 ↪→ E S,ϵ

Ω,h

sending xS,ϵ0
π̃ to xS,ϵ

π̃ . Thus ιϵ(C ϵ0) ⊂ C ϵ, so C ϵ contains an irreducible component of dimension
dim(Ω). As OC ϵ ∼= OΩ/IC ϵ , we deduce IC ϵ = 0, so C ϵ → Ω is étale at π̃, and conclude that ιϵ

is an isomorphism as in Corollary 7.22.

Hence E S
Ω,h and all the E S,ϵ

Ω,h are locally isomorphic at π̃, so we drop ϵ from notation. We
deduce existence and étaleness of the component C ⊂ E S

Ω,h in Theorem 8.11; we take it to be any
of the C ϵ. The isomorphisms between the C ϵ identify all the xS,ϵ

π̃ with a single point xS
π̃ ∈ E S

Ω,h.

Remark 8.18. Having a family of cuspidal automorphic representations is essential here; e.g.
for GL2, an Eisenstein series will appear in only one of the ±-eigencurves (see [20, §3.2.6]).

8.3.5. Eigenclasses for Shalika families. We now refine Proposition 8.16. Suppose π̃ satisfying
(C1-2) of Conditions 2.8 is strongly non-Q-critical. For v ∈ S, assume πv admits a Shalika new
vector of conductor c(πv) and Hypothesis 8.6 holds for c = c(πv). Suppose λπ is H-regular and
π admits a non-zero Deligne-critical L-value at p. Then by §8.3.4, we know:

(1) that there is a unique irreducible component C of E S
Ω,h through xS

π̃;
(2) that C = Sp(TS

Ω,C ) = Sp(TS,ϵ
Ω,C ) for all ϵ; and

(3) that w : C → Ω is étale.

As in Proposition 7.14, we deduce that C contains a Zariski-dense set Cnc of classical cuspidal
non-Q-critical points. If y ∈ Cnc it corresponds to a Q-refined RACAR π̃y, since by construction
y appears in cohomology at (parahoric-at-p) level K(π̃).

Proposition 8.19. For each ϵ ∈ {±1}Σ, up to shrinking Ω, there exists a Hecke eigenclass
ΦϵC ∈ Ht

c(SK(π̃),DΩ)ϵ such that for each y ∈ Cnc:

(i) Ht
c(SK(π̃),Dλy

)ϵmS
y

is a line generated by spλy
(ΦϵC ), where λy ..= w(y),

(ii) the Q-refined RACAR π̃y satisfies (C1),

(iii) for all v ∈ S, πy,v admits a Shalika new vector of conductor c(πy,v) = c(πv), and

(iv) π̃y satisfies (C2).

Proof. (i) By Propositions 8.15 and 8.17, Ht
c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ

Ω,h
TS,ϵ

Ω,C ⊂ Ht
c(SK(π̃),DΩ)ϵ is

free of rank one over OΩ; let ΦϵC be any generator. The Hecke operators act by scalars on this
OΩ-line, so ΦϵC is a Hecke eigenclass. By Proposition 8.15 the structure map OΩ → TS,ϵ

Ω,C is an
isomorphism, mapping mλy

bijectively to mS
y . Thus specialisation at λy, induced from reduction

modulo mλy
as an OΩ-module, is equivalent to reduction modulo mS

y as a TS,ϵ
Ω,C -module; whence

spλy
: Ht

c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ
Ω,h

TS,ϵ
Ω,C −↠ Ht

c(SK(π̃),DΩ)⩽h,ϵ ⊗TS,ϵ
Ω,h

TS,ϵ
Ω,C /m

S
y

∼= Ht
c(SK(π̃),DΩ)ϵmS

y
⊗TS,ϵ

Ω,π̃y

(TS,ϵ
Ω,π̃y

/mS
y)

∼= Ht
c(SK(π̃),DΩ)ϵmS

y
⊗Λy

(Λy/mλy
) ∼= Ht

c(SK(π̃),Dλy
)ϵmS

y
, (8.5)

where Λy ..= OΩ,mλy
. Here the first isomorphism follows since reduction at mS

y factors through
localisation at mS

y , the second as the weight map is an isomorphism at y, and the third by
Remark 7.9. Hence Ht

c(SK(π̃),Dλy )ϵmS
y

is a line over L, generated by spλy
(ΦϵC ), which proves (i).

(ii) To prove each y ∈ Cnc satisfies (C1), we argue exactly as in Proposition 7.16; here we
already have étaleness, so this case is easier, and we are terse with details. Fix (χ, j) with
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L(p)(π ⊗ χ, j + 1
2 ) ̸= 0 (by hypothesis), where χ has conductor pβ , with βp ⩾ 1 for all p|p. Let

ϵ = (χχjcycη)∞, and define a map

EvΩ
χ,j : Ht

c(SK(π̃),DΩ)→ OΩ

such that (up to shrinking Ω) EvΩ
χ,j(ΦϵC ) is everywhere non-vanishing on Ω. Recall E j,η0

χ from
(5.4). Then for all y ∈ Cnc, we have

EvΩ
χ,j(ΦϵC )(λy) =

∫
Galp

χ χjcyc · Evη0
β (spλy

(ΦϵC )) (8.6)

= Ej,η0
χ

(
rλy
◦ spλy

(ΦϵC )
)
̸= 0.

As (8.6) is non-zero, each πy satisfies (C1) by Proposition 5.15(cf. Proposition 7.16), showing
(ii).

We need the following in proving both (iii) and (iv). Combining (i) with non-Q-criticality
shows

dimL Ht
c(SK(π̃),V

∨
λy

(L))ϵmS
y

= 1.

Base-changing, the same is true with Qp-coefficients. By Proposition 2.3, we see:

(†) the generalised HS-eigenspace in π
K(π̃)
y,f at mS

y is a line over C.

(iii) We now study πy at v ∈ S. Letting ηy = η0| · |wy , by (†) we have

dimC (πy,v)J
ηy
v (c)[Sαv

− ηy,v(αv) : αv ∈ O×
v

]
= 1.

Lemma 8.4 implies that πy,v admits a Shalika new vector of conductor c = c(πv), giving (iii).

(iv) As in (iii), πp,y is parahoric-spherical as (†) implies

dimC π
Jp
p,y

[
U◦
p − α◦

p,y

]
= dimC S

ηp,y

ψp
(πJpp,y)

[
U◦
p − α◦

p,y

]
= 1, (8.7)

where α◦
p,y is the U◦

p -eigenvalue of π̃y. It remains to show the non-vanishing in (C2).
Let Wp,y be a generator of (8.7) for p|p. Using (C1) at v /∈ S ∪ {p|p}, and Hypothesis 8.6

and the equality c(πy,v) = c(πv) for v ∈ S, we may take Friedberg–Jacquet test vectors WFJ
y,v for

v ∤ p such that
WFJ
y,f = ⊗v∤pWFJ

y,v ⊗p|pWp,y ∈ S
ηy,f

ψf

(
π
K(π̃)
y,f

)
is fixed by K(π̃). For ϵ as in (8.6), let

ϕϵy
..= ΘK(π̃),ϵ

ip
(WFJ

y,f ) ∈ Ht
c(SK(π̃),V

∨
λy

(Qp))ϵmS
y
.

This line contains rλy ◦ spλy
(ΦϵC ), so there is cϵy ∈ Q×

p such that cϵyϕϵy = rλy ◦ spλy
(ΦϵC ). Then

cϵy · Ej,η0
χ

(
ϕϵy
)

= Ej,η0
χ

(
rλy ◦ spλy

(ΦϵC )
)
̸= 0,

where non-vanishing is (8.6). As in Theorem 5.22 (via Lemma 5.16 and Proposition 5.20), the
left-hand side is[

cϵyγpmλy(tβp )NF/Q(d)jnτ(χf )n

×
∏

p|p ep(π̃y, χ, j)e∞(πy, χ, j)L(p)(πy ⊗ χ, j + 1
2 )
]
·
∏

p|pWy,p(t−δpp ) ̸= 0.

As the L-function is analytic, the bracketed term is finite scalar; we deduce that eachWy,p(t−δpp ) ̸=
0. We can renormalise Wy,p (and hence cϵy) so that Wy,p(t−δpp ) = 1, so (C2) holds.

With this, we have completed the proof of Theorem 8.11.
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8.4. Families of p-adic L-functions. Let π̃ satisfy (C1-2) of Conditions 2.8. We also assume
that all the hypotheses of Theorem 8.11 are satisfied.

Let C ⊂ E S
Ω,h be the unique (Shalika) family through xS

π̃, and Cnc the Zariski-dense subset of
classical points, both from Theorem 8.11. For each ϵ ∈ {±1}Σ let ΦϵC ∈ Ht

c(SK(π̃),DΩ)ϵ be the
resulting Hecke eigenclass. We may renormalise ΦϵC so that spλ(ΦϵC ) = Φϵπ̃. The following is an
analogue of Definition 6.22 for families.

Definition 8.20. Let LC ,ϵ
p

..= µη0(ΦϵC ). Also let

ΦC =
∑
ϵ

ΦϵC ∈ Ht
c(SK(π̃),DΩ),

which is also a Hecke eigenclass. Define the p-adic L-function over C to be

LC
p

..= µη0(ΦC ) =
∑

ϵ∈{±1}Σ

LC ,ϵ
p ∈ D(Galp,OΩ).

Via the Amice transform, as in Definition 6.22, after identifying C with Ω via w we may consider
LC
p as a rigid function C ×X (Galp)→ Qp.

The following implies Theorem C of the introduction. The hard/novel part of the proof has
already been handled; given Theorem 8.11, the remainder is standard.

Theorem 8.21. Suppose π̃ satisfies the hypotheses of Theorem 8.11. Let y ∈ Cnc be a classical
cuspidal point attached to a non-Q-critical Q-refined RACAR π̃y satisfying (C1-2). For each ϵ,
there exists a p-adic period cϵy ∈ L× such that

LC ,ϵ
p (y,−) = cϵy · Lϵp(π̃y,−) (8.8)

as functions X (Galp) → Qp. In particular, LC
p satisfies the following interpolation: for any

j ∈ Crit(w(y)), and for any Hecke character χ of conductor pβ with βp > 1 for all p|p, we have

i−1
p (LC

p (y, χχjcyc)) = cϵyAτ(χf )nNF/Q(d)jn
∏
p|p

ep(π̃y, χ, j)e∞(πy, χ, j)L
(p)(πy×χ,j+1/2)

Ωϵ
πy

,

where ϵ = (χχjcycη)∞ and other notation is as in Theorem 6.23. Finally cϵ
xS

π̃
= 1 for all ϵ.

Remark 8.22. The complex periods Ωϵπy
are only well-defined up to multiplication by E×,

where E is the number field from Definition 2.9; the numbers cϵy are p-adic analogues.

Proof. Let y be as in the theorem and put λy = w(y). As in §2.8 (using Hypothesis 8.6), fix a
Friedberg–Jacquet test vector

WFJ
y,f ∈ S

ηy,f

ψf
(πy,f )K(π̃),

and for each ϵ a complex period Ωϵπy
as in §2.10. Since y ∈ C is defined over L, as in §2.10 there

exists a class
ϕϵy

..= ΘK,ϵ
ip

(WFJ
y,f )
/
ip(Ωϵπy

) ∈ Ht
c(SK(π̃),V

∨
λy

(L))ϵmS
y
.

Via non-Q-criticality, we lift ϕϵy to a non-zero class Φϵy ∈ Ht
c(SK(π̃),Dλy

(L))ϵmS
y

. By Theorem 8.11,
this space is equal to L · spλy

(ΦϵC ), so there exists cϵy ∈ L× such that

spλy
(ΦϵC ) = cϵy · Φϵy.

By definition, Lϵp(π̃y) = µη0(Φϵy). As evaluation maps commute with weight specialisation (Propo-
sition 6.15), we find

spλy
(LC ,ϵ

p ) = cϵy · Lϵp(π̃y),

which is a reformulation of (8.8). The interpolation formula then follows from Remark 6.24.
Finally, our normalisation of ΦϵC ensures cϵ

xS
π̃

= 1.
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8.5. Unicity of non-Q-critical p-adic L-functions. In Proposition 6.25, we proved a unic-
ity result for Lp(π̃) when π̃ has sufficiently small slope. Whilst non-Q-critical slope implies
non-Q-critical, the converse is false; even when G = GL2, there exist critical slope refinements
that are non-critical (e.g. [69, 20]). We now use LC

p to prove an analogue of Proposition 6.25 for
the wider class of (non-Q-critical) π̃ satisfying the hypotheses of Theorem 8.11.

Let α◦
p =

∏
p|p(α◦

p)ep and hp ..= vp(α◦
p). For ϵ ∈ {±1}Σ, let X (Galp)ϵ be the component of

characters χ with ϵ = (χη)∞. Then

X (Galp) =
⊔
ϵ

X (Galp)ϵ

(e.g. [23, Rem. 7.3.4]). If L : C ×X (Galp) → L is a rigid analytic function, then L =
∑
ϵ Lϵ,

with Lϵ supported on C ×X (Galp)ϵ.

Proposition 8.23. Suppose π̃ satisfies the hypotheses of Theorem 8.11. Suppose Leopoldt’s
conjecture holds for F at p and that Lϵp(π̃) ̸= 0. Let

Lϵ : C ×X (Galp)ϵ → L

be any rigid analytic function such that for all y ∈ Cnc, the specialisation Lϵ(y,−) is admissible
of growth hp and there exists Cϵy ∈ L× such that

i−1
p (LC

p (y, χχjcyc)) = CϵyAτ(χf )nNF/Q(d)jn
∏
p|p

ep(π̃y, χ, j) · e∞(πy, χ, j)L
(p)(πy×χ,j+1/2)

Ωϵ
πy

, (8.9)

for all finite order χ ∈ X (Galp) and j ∈ Crit(λy) such that (χχjcycη)∞ = ϵ. Then there exists
C ∈ L such that

Lϵ
(
xS
π̃,−

)
= C · Lϵp(π̃) ∈ D(Galp, L).

Proof. Let
Bϵ = Lϵ/LC ,ϵ

p ∈ Frac
(
O(C ×X (Galp)ϵ)

)
.

We claim LC ,ϵ
p is not a zero-divisor, so this is well-defined. Note C contains a Zariski-dense set of

classical points y of regular weight; at every such point, let jy = max(Crit(λy)). Fix such a y. For
any everywhere ramified finite order Hecke character χ ∈ X (Galp) with χ(z)zjy ∈ X (Galp)ϵ,
we have

LC ,ϵ
p (y, χ(z)zjy ) = cϵyAτ(χf )nNF/Q(d)jn

∏
p|p

ep(π̃y, χ, j)e∞(πy, χ, j)L
(p)(πy×χ,j+1/2)

Ωϵ
πy

̸= 0. (8.10)

Every connected component of X (Galp)ϵ contains such a character χ(z)zjy , and on every such
component the only zero-divisor is 0; we conclude that LC ,ϵ

p (y,−) is not a zero-divisor. Now
suppose MLC ,ϵ

p = 0 for some M ∈ O(C ×X (Galp)ϵ). Then M(y,−) = 0 for all y as above.
Since this is true for a Zariski-dense set, we have M = 0, and LC ,ϵ

p is not a zero-divisor.
For a Zariski-dense subset of classical y ∈ C , we have hp < #Crit(λy). Fix such a y. Since the

slope at p is constant in p-adic families, y has slope hp and hence both Lϵ(y,−) and LC ,ϵ
p (y,−)

are admissible of growth hp. Thus by (8.9) and Proposition 6.25 we know

Bϵ(y,−) = Cϵy/c
ϵ
y ∈ L×

is constant (as a function on X (Galp)ϵ). By Zariski-density of such points y, we deduce that
Bϵ(y,−) ∈ P1(L) is constant for each y ∈ C . Moreover Bϵ(y,−) does not have a pole at y = xS

π̃

since
LC ,ϵ
p (xS

π̃,−) = Lϵp(π̃) ̸= 0
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by assumption, so Bϵ(xS
π̃,−) = C for some C ∈ L. In particular

Lϵ(xS
π̃,−) = CLC ,ϵ

p (xS
π̃,−) = CLϵp(π̃).

The following is a reformulation of Proposition 8.23:

Corollary 8.24. Suppose π̃ satisfies the hypotheses of Theorem 8.11. Assume Leopoldt’s conjec-
ture for F at p. Up to scaling the p-adic periods, Lp(π̃) is uniquely determined by interpolation
of L-values over the unique Shalika family C of level K(π̃) through π̃.

In particular, up to these assumptions Lp(π̃) does not depend on our method of construction.

Remarks 8.25. We expect that Lϵp(π̃) should always be non-zero. By (8.9) and Lemma 7.4, if
λπ is regular this is automatic for any ϵ such that there exists a finite order Hecke character χ
such that (χjcycχη)∞ = ϵ, where j is any integer strictly above the centre of Crit(λπ).

Without Leopoldt, there is still an analogue for the restriction to 1-dimensional slices of Galp
(cf. [11, Thm. 4.7(ii)] or §6.6). Thus the restriction of Lp(π̃) to the cyclotomic line is unique.

A. Errata for earlier works

Whilst writing this paper, we found errors in our earlier publications. We clarify them here.

(1) In [19, Rem. 4.19], which compared the right actions used in that paper with the left actions
used in this, in the final sentence U∗

p should have been λ(σ(t)−1t)U ·
p (not λ∨(σ(t)−1t)U ·

p).
This was not used elsewhere ibid.; we have used the correct formulation here.

(2) The power of q in the statement of [38, Prop. 3.4] is incorrect. In the proof, one can reduce
the support of the integral in the penultimate displayed equation to the Iwahori subgroup,
not to N−

n (Pβ)Tn(O)Nn(Pβ) as stated, so the final volume term is wrong. The proof
otherwise holds. A corrected statement is Proposition 5.20 of the present paper. (This
ensures the final interpolation result is consistent with the Coates–Perrin-Riou conjecture
on existence of p-adic L-functions; see [7, §3]. Indeed, [38, Thm. B] is not consistent with
Coates–Perrin-Riou). The powers of q in Theorem B and Theorem 4.7 of [38] are thus
incorrect. The interpolation formulas there should be replaced by that of Theorem A here.

Glossary of key notation/terminology

A = AQ . . . . . .Locally analytic function space (§3.2)
αp, αp . . . . . . . . . . . . . . . . . . . . Up, Up eigenvalues (§2.7)
α◦
p , α

◦
p . . . . . . . . . . . . . . . . . . . .U◦

p , U
◦
p eigenvalues (§3.3)

β = (βp)p|p ∈ Zp|p . . . . . . . . . . . . . . . .Multi-index (§4.1)
(C1),(C2) . . . . . . . . . . . Assumptions on π̃ (Cond. 2.8)
C . . . . . . . . . . . . . Connected component of EΩ,h (§7.3)
Cℓ+F (I) . . . . . . . . . . Narrow ray class gp. cond. I (§2.1)
Crit(λ) . . . Deligne-critical L-values for λ (eqn. (2.2))
D . . . . . . . . . . . . Locally analytic distributions (§6.1.1)
Dλ = DQ

λ
. . . . . . . Q-parahoric dists. of wt. λ (§3.2.2)

DΩ = DQ
Ω . . . . . . . .Q-parahoric dists. over Ω (§3.2.3)

D . . . . . . . . . . . . Local system of distributions (§2.3.2)
∆p . . . . . . . . . . Monoid in G(Qp) gen. by Jp, tp (§3.3)
δ . . . . . . . . . . . . . . . . . . Representative of π0(Xβ) (§4.1)
EvMβ,δ . . . . . . . . . . . Abstract evaluation map (Def. 4.5)

Evη0
β

. . . . . . . . . . . . . . . . . Galois evaluation (eqn. (6.15))
Ej,η0
χ . . .Classical evaluation map at χ, j (eqn. (5.4))

EΩ,h . . . . . . Q-parabolic eigenvariety for G (Def. 7.1)
E S,ϵ

Ω,h . . . . . . ‘modified’ Q-par. eigenvariety (Def. 8.10)
ep(π̃, χ, j) . . . . . . . . . . . .C–PR factor at p (Thm. 6.23)
e′
p(π̃, χ, j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Def. 5.19
e∞(π, χ, j) . . . . . . . . . . . . C–PR factor at ∞ (Def. 5.18
ϵ . . . . . . . . . . . . Character K∞/K◦

∞ → {±1}Σ (§2.3.4)
F . . . . . . . . . . . . . . . . . . . . . .Totally real field of degree d
ϕϵπ̃ . . . . . . . . . . . . . . . . . Classical class in Htc (Def. 2.10)
Φϵπ̃ ,Φπ̃ . . . . . . . . . Overconvergent classes in Htc (§6.6)
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ResOF /Z GL2n
Gn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ResOF /Z GLn
Galp . . . . . . . . . . . . . . . . . . . . . . . . . . . .Gal(F p∞/F ) (§2.1)
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Galcyc
p . . . . . . . . . . . . . . . . . . . . . . . . . .Gal(Qp∞/Q) (§2.1)

Γβ,δ Arithmetic group in automorphic cycle (§4.2.2)
H . . . . . . . . . . . . . . . . . . . . . . . . . . . ResOF /Z[GLn × GLn]
H′,H . . . . . Universal Hecke algebras (§2.4, Def. 2.9)
HS .Universal Hecke algebra at all primes (Def. 8.7)
⩽ h . . . . . . . . . . . . . . . . . . . . . . . Slope U◦

p ⩽ h part (§3.3)
I . . . . . . . . . . . . . . . . . . . Irreducible component of EΩ,h
ip . . . . . . . . . . . . . . . . . . . .Fixed isomorphism C ∼−−→ Qp

ι . . . . . . . . . . . . . .Map H ↪→ G, (h1, h2) 7→ diag(h1, h2)
ιβ . . . . . . . . . . . Map in automorphic cycle (eqn. (4.3))
η . . . . . . . . . . . . . . . . . . . . . . . . . . Shalika character (§2.6)
Jp . . . . . . . . . . . . . Parahoric subgroup of type Q (§2.7)
Jβp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eqn. (6.8)
K . . . . . . . .Open cpct. subgp. of G(Af ) (eqn. (2.20))
K(π̃) . . . . Friedberg–Jacquet level (eqn. (2.23),§8.3.1)
K1(π̃) . . . . . . . . . . . . . Whittaker new level (eqn. (7.2))
κλ,j . . . . . . . . . . . . . . . . . . . Map V ∨

λ → V H(j,−w−j) (§5.2)
κ◦
λ,j . . . . . . . Normalised map V ∨

λ (L) → L (Def. 5.10)
L . . . . . . . . . .Extension of Qp, coefficient field (§2.10)
Lβ . . . . . . . . . . . . . Open compact in H(Af ) (Def. 4.2)
L(π, s) . . . . . . . . . . . . . . . . . . . . . . . . . . Standard L-fn. of π
L(p)(π, s) . . . . . . . . . . . .L() with no Euler factors at p
Lp(π̃) . . . . . . . . . . . . . . . . . .p-adic L-function of π̃ (§6.6)
LC
p . . p-adic L-function in family over C (Def. 8.20)

Λ . . . . . . . . . . . . . . . . .Localisation of OΩ at λπ (§8.3.3)
λπ (Pure, dominant, integral) weight of π (Def. 3.4)
mπ̃ . . . . . . . . . . . . . . . . . . . . . . Max. ideal in H (Def. 2.9)
mS
π̃ . . . . . . . . . . . . . . . . . . . . . Max. ideal in HS (Def. 8.8)

mλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Max. ideal in OΩ
Non-Q-critical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.14
Non-Q-critical slope . . . . . . . . . . . . . . . . . . . . . . Def. 3.15
NQ . . . . . . . . . . . . . . . . . . . . . . . . . Unipotent radical of Q
vλ,j . . . . . . . . . . . . . . . . . . . . . . . Element of Vλ(L) (§5.2)
Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Affinoid in W Q

λπ

Ωϵπ . . . . . . . . . . . . . . . . . . . . . . . . . Complex period (§2.10)
OΩ . . . . . . . . . . . . . . . . . . . . Ring of rigid functions on Ω
OF,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OF ⊗ Zp
pβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∏
pβp (Def. 4.2)

prβ . . . . . . . . . . . . . . . . . . Map π0(Xβ) → Cℓ+F (pβ) (5.3)
π . . . . . . . . . . . . . .Auto. repn. of G(A) (Conditions 2.8)
π̃ . . . . . . . . . . .p-refinement of π (§2.7, Conditions 2.8)
π0(Xβ) . . . . Component group of auto. cycle (before
(5.3))
ϖv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Uniformiser of Fv
ψ . . . . . . . . . . . . . . . Additive character of F\AF (§2.6)
Q . . . . . . . . . . . . . . . . . Parabolic subgroup with Levi H
Q-refined RACAR . .Choice of Q-ref’t π̃p ∀p|p (§2.7)

qp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NF/Q(p)
RACAR . . . . . . regular algebraic cuspidal auto. repn.
RASCAR . . . . . . . . . . . . η-symplectic RACAR (Intro.)
rλ . . . . . . Specialisation map Dλ → V ∨

λ (eqn. (3.10))
Shalika model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §2.6
Strongly non-Q-critical . . . . . . . . . . . . . . . . . . . .Def. 3.14
SK . . Loc. symm. space for G of level K (eqn. (2.3))
S . . . . . . . . . . . . . . . . .{v ∤ p∞ : πv not spherical} (§2.4)
Sη
ψ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Shalika model (§2.6)
spλ . . . .Any map induced from (mod mλ) : OΩ → L

Σ . . . . . . . . . . . . . . . . . . . . . . Set of real embeddings of F
σ . . . . . . . . . . . . . . . . . . . . . . . . . . Real embedding F ↪→ Q
σ(p) . . . . . . . . . Real embedding attached to p|p (§2.1)
TΩ,h . . . . . . . . . . . . . .Hecke algebra using H (Def. 7.1)
TS

Ω,h . . . . . . . . . . . Hecke algebra using HS (Def. 8.10)
t = d(n2 + n− 1) . . Top degree of cusp. cohomology
tp . . . . . . . . . . . . . . . . . . . . . . diag(ϖpIn, In) ∈ GL2n(Fp)
tβp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∏
t
βp
p (Def. 4.2)

τ(χf ) . . . . . . . . . . . . . . . . Gauss sum of χf (Thm. 5.22)
τ◦
β . . . . . . . . . . . . . . . . . . . . . . . . . . . Twisting map (§4.2.1)

ΘK,ϵ,ΘK,ϵip
. . . . . . . . . . . Maps Sηf

ψf
(πKf ) → Htc (§2.10)

Up = U ·
p . . . . . . . . . . . Automorphic Up-operator (§2.7)

U◦
p . . . . . . . . . . . . . Integrally normalised Up (§2.7,§3.3)

U (I) . . . . . . . . . . . . . . Integral ideles ≡ 1 (mod I) (§2.1)
Vλ . . . . . . . . . . . . . . . Alg. repn. of G of weight λ (§2.2)
V Hλ . . . . . . . . . . . . . . . . . . . . Alg. repn. of H of weight λ
V HΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (§3.2.3)
V . . . . . . . . Archimedean local system on SK (§2.3.1)
V . . . .Non-archimedean local system on SK (§2.3.2)
vHλ , v

H
Ω . . . . . Elements of V Hλ and V HΩ (Not. 5.9,6.3)

W0 . . . . . . . . . . . . . . . . . . . . . . . . Pure weight space (§3.1)
W Q
λπ

. . . . . . . . . . . . .(Parabolic) Weight space (Def. 3.4)
WFJ . . . . . . . . . . Friedberg–Jacquet test vector (§2.6)
w (or wλ,wΩ) . . . . . . . . . . . . . . . . . Purity weight (§2.2)
wn . . . . . . . Longest Weyl element for GLn (Def. 4.2)
Xβ . . . . . . . . . . . . . Automorphic cycle of level β (§4.1)
χ . . . . . . . . . . . . . . . . . . . . . .Finite order Hecke character
ξ, ξp . . . . . . . . . . . . . . . . . . . . Twisting operator (Def. 4.2)
xπ̃ . . . . . . . . . . . . . . Point of EΩ,h corr. to π̃ (Thm. 7.6)
xS
π̃ . . . . . . . . . . . . . Point of E S

Ω,h corr. to π̃ (Thm. 8.11)
χcyc . . . . . . . . . . . . . . . . . . .Cyclotomic character of Galp
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Centre of G
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Element of Cℓ+F (pβ)
∗-action of ∆p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §3.3
⟨−⟩λ, ⟨−⟩Ω . . . . . . . . . . . . actions of H(Zp) ((3.1),(3.5))
−mπ̃ . . . . . . . . . . . . . . . . . . Localisation at mπ̃ (Def. 2.9)
−mS

π̃
. . . . . . . . . . . . . . . . . . Localisation at mS

π̃ (Def. 8.8)
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