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Describing the Universal Deformation Ring
These are notes for a talk I gave at the Warwick Number Theory study group on De-
formations of Galois representations, February 2015, and were written mainly for my
own benefit. The results stated make more sense when taken in step with the rest of the
study group. These notes are largely taken from [Gou01].

1. Introduction and Recap
Recall our work so far; we have developed the basic theory of Galois deformations and,
in the previous lecture, have shown (modulo Schlessinger’s generalisation of a theorem
of Grothendieck) that the deformation functor is representable. More precisely, let Π
be a profinite group, k a finite field of characteristic p and

ρ : Π −→ GLn(k)

an absolutely irreducible residual representation. (In fact, absolute irreducibility is a
stronger condition than we actually need; it suffices to say that the only Π-module
endomorphisms of kn are scalars. From now on, we’ll assume that all of our residual
representations have this property).

Definition 1.1. Let C be the category of complete local noetherian rings with residue
field k, with morphisms being local homomorphisms that induce the identity on residue
fields. We call the objects coefficient rings, and they are quotients of power series over
W (k), the ring of Witt vectors for k. For an object Λ of C, define the category CΛ to be
the category whose objects are complete local noetherian Λ-algebras with residue field
k, with the same morphisms. Then we have C = CW (k).

For A an object of C, a deformation of ρ to A is a strict equivalence class of homomor-
phisms ρ : Π→ GLn(A) such that the reduction of ρ to k gives ρ. We define a functor
DΛ : CΛ → Set by setting DΛ(A) ..= {deformations of ρ to A}. To this, we associate
the Zariski tangent space tDΛ = DΛ(k[ε]), a finite dimensional k-vector space, where
k[ε] ..= k[X]/[X2].

Theorem 1.2 (Mazur, Ramakrishna). The functor DΛ is representable. In particular,
there exists a universal deformation ring Runiv = Runiv(ρ) ∈ Obj(CΛ) and a universal
deformation

ρuniv : Π −→ GLn(Runiv)

such that for any object A ∈ CΛ and deformation ρ : Π → GLn(A), there is a map
Runiv → A which sends ρuniv to ρ. Moreover, if d ..= dimk tDΛ , we can describe Runiv

as
Runiv = Λ[[X1, ..., Xd]]/I

for some ideal I.

In this talk, we aim to describe the universal deformation ring in more detail. Firstly,
we compute this ring in the case where ρ is a character, that is, for n = 1; secondly, we
look at the number of generators d, showing that we can describe this in cohomological
terms.
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2. The Universal Character
In this section, we focus on the case where n = 1, where we can obtain a complete
description of the theory. With this in mind, let χ : Π→ k× be our residual representa-
tion. We are looking to characterise all lifts to A× for objects A of CΛ. First note that
via the Teichmuller lift, we have a canonical decomposition

A× ∼= k× × (1 + mA),

where mA is the maximal ideal of A. In particular, we have a canonical lift of χ to
χA : Π→ A×, the Teichmuller lift.

Now let χ : Π → A× be an arbitrary lift of χ to A. As χ lifts χ, the character χ
is entirely determined by its values projected down to 1 + mA, that is, we can write
χ = (χ, ψ), where ψ is a homomorphism Π→ 1 + mA. Now, 1 + mA is an abelian pro-p
group (that is, every open normal subgroup has p-power index); indeed,

1 + mA ∼= lim
←−

(1 + mA)/(1 + mnA),

and each term in the inverse limit is isomorphic to a finite abelian p-group. Any ho-
momorphism from a group to an abelian pro-p group must factor through the pro-p
completion of its abelianisation. So ψ factors through this quotient Γ of Π. In other
words, we have a canonical map Π→ Γ and a map ψ̃ : Γ→ 1 +mA associated to ψ such
that any ψ factors as

ψ : Π −→ Γ −→ 1 + mA. (1)

Examples: (i) Suppose Π = GQ,p. Then from class field theory, we know that Πab ∼=
Z×p , and the pro-p completion of of Z×p is 1 + pZp. Thus in this case Γ = 1 + pZp.

(ii) If Π = GQ`
for some prime `, then we have Πab is Ẑ, and thus Γ = Zp.

Equation (1) is akin to the universal property we are looking for. Accordingly, it makes
sense to try and construct a coefficient ring out of Γ. There is a natural way of doing
this; namely, we take the completed group ring

Λ[[Γ]] ..= lim
←−

Λ[Γ/U ],

where the limit runs over all open normal subgroups of Γ.

Remark: The notation here is slightly confusing; at first glance, it looks like this ring
could be an ‘infinite sum’ analogue of the usual group rings. If this were so, we’d expect
the element

∑
g∈Γ[g] to live in Λ[[Γ]], but this does not happen. Indeed, there is a

natural augmentation map Λ[[Γ]]→ Λ[Γ/Γ] ∼= Λ, given by mapping every basis element
[g] to 1. Clearly the ‘element’ given earlier does not have well-defined image under the
augmentation map. So we must impose at least some conditions on the coefficients of
our power series.

Proposition 2.1. The ring Λ[[Γ]] is an object of CΛ.

Proof. If I denotes the kernel of the augmentation map, then the maximal ideal is
(I,mΛ). For a complete proof, see [Sha].

2



Describing the Universal Deformation Ring Chris Williams

Theorem 2.2. For a residual character, we have Runiv = Λ[[Γ]]. The universal char-
acter is given by

χuniv : Π −→ Λ[[Γ]]×,
g 7−→ χΛ(g)[γ(g)],

where γ : Π→ Γ is the projection to Γ.

Proof. It’s clear that χuniv is a character. It remains to show that it is universal. To
this end, let χ : Π → A× be a lift of χ to a coefficient ring A. Then, from above, we
know that χ gives rise to a map ψ̃ : Γ → 1 + mA. This, together with the Λ-algebra
structure on A, induces a map

Λ[[Γ]] −→ A.

(Indeed, there is an obvious map Λ[Γ] → A; complete this map with respect to the
corresponding maximal ideals). We then see easily that ψ̃ ◦ χuniv = χ, and we are
done.

Note here that the universal deformation ring in the 1-dimensional case is thus indepen-
dent of the initial character. This is part of a wider phenomenon; indeed, in [Maz89], it
is proved that:

Theorem 2.3. Let ρ and ρ′ be residual representations with universal deformation rings
Runiv(ρ) and Runiv(ρ′), and suppose that ρ ∼= ρ′ ⊗ χ for a residual character χ. Then
there is a canonical isomorphism

φ : Runiv(ρ) ∼= Runiv(ρ′),

and φ takes ρuniv to (ρ′)univ ⊗ χ0, where χ0 is the Teichmuller lift of χ to Λ.

We end this section with a remark on wider applications of the case of characters.
Indeed, suppose ρ is a residual representation to GLn(k), with universal deformation
ring Runiv(ρ); then we can apply the determinant map to get a character χ = det(ρ).
Any deformation ρ of ρ will give a deformation det(ρ) of χ, and then naturally we see
that applying this to the universal deformation of ρ, we get a deformation

det(ρuniv) : Π→ (Runiv)×

of χ. Thus there is a natural map from the universal deformation ring Λ[[Γ]] of χ to
Runiv, giving the latter a Λ[[Γ]]-algebra structure.

3. The Relation to Cohomology
We can give more complete descriptions of the universal deformation ring via the group
cohomology of Π. Indeed, recall that we can view Runiv as a quotient of a power series
ring in d variables over Λ, where d = dimk tDΛ = dimkDΛ(k[ε]). We will show that
we have an isomorphism tDΛ = H1(Π,Ad(ρ)), where Ad(ρ) is the adjoint representation
of ρ, and that this space is further naturally isomorphic to the group ExtΠ(ρ, ρ) of
extensions of ρ by itself.
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3.1. The Relation to Ad(ρ)
Suppose ρ is a residual representation with universal deformation ring Runiv. Consider
an element ρ ∈ DΛ(k[ε]). Take a representative homomorphism φ : Runiv → k[ε]. Then
as φ lifts ρ, we know we can write

φ(g) = (1 + bgε)ρ(g),

where bg ∈ Mn(k). Then

φ(gh) = φ(g)φ(h) = (1 + bgε)ρ(g)(1 + bhε)ρ(h)
= (1 + (bg + ρ(g)bhρ(g)−1)ε)ρ(gh).

It follows that if we let Π act on Mn(k) by

g ·A = ρ(g)Aρ(g)−1,

that we have
bgh = bg + g · bh,

that is, the association g 7→ bg is a cocycle. We call Mn(k) with this action of Π the
adjoint representation of ρ, and denote it Ad(ρ).

Proposition 3.1. The association g 7→ bg induces an isomorphism

DΛ(k[ε]) ∼= H1(Π,Ad(ρ))

of k-vector spaces.

Proof. This is a simple exercise. One must show that strictly equivalent homomorphisms
give cocycles that differ by a coboundary; for this, one uses the relation that if N ∈
Mn(k), then (1 +Nε)−1 = (1−Nε) ∈ GLn(k[ε]), and then it follows that the cocycles
given by φ and (1+Nε)φ(1−Nε)−1 differ by the coboundary N −g ·N . As this process
can be reversed, we have injectivity. Likewise, from a cocycle we can easily construct
a homomorphism lifting ρ, proving surjectivity. That this is a k-vector space map is
easily shown from the definitions and is more instructive to work out yourself.

Corollary 3.2. There is a short exact sequence

0 −→ I −→ Λ[[X1, ..., Xd]] −→ Runiv −→ 0,

where d = dimk H1(Π,Ad(ρ)).

Why is this important? When Π is a Galois group, we are brought into the realms of
Galois cohomology, bringing a myriad of tools to our disposal. For example, in the next
talk, we’ll show that the ideal I that we quotient by to obtain Runiv can be generated
by at most d2 = dimk H2(Π,Ad(ρ)) elements, so that we have neat lower bounds for the
dimension of Runiv given by the Euler-Poincaré characteristic.

3.2. The Relation to ExtΠ(ρ, ρ)
We have a further description. The study of Galois deformations is, in a sense, looking
to find families of Galois deformations. One of the simplest ways of doing this is to talk
about extensions of representations. The tangent space also characterises certain types
of these extensions; we make this more precise in the following.
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Let ρ be a residual respresentation and consider ρ ∈ DΛ(k[ε]), represented by a homo-
morphism φ. Denote by Vρ the space kn with the action of Π given by ρ, and by E the
space k[ε]n with the action of Π given by φ. Then we have a short exact sequence

0 −→ Vρ
α

−−−−−→ E
β

−−−−−→ Vρ −→ 0,

where we identify the first copy of Vρ with εE and let α be the natural inclusion, and
the second copy with the quotient E/εE. Thus any element of DΛ(k[ε]) determines an
extension of ρ by itself.

Conversely, suppose we are given an extension

0 −→ Vρ
α

−−−−−→ E
β

−−−−−→ Vρ −→ 0

of Π-modules. Then we want to find a k[ε]-module structure on E. Indeed, define
multiplication by ε by the map α ◦ β; we see from exactness that (α ◦ β)2 = 0, hence
this is well-defined. We also see that as α and β are Π-module homomorphisms, this
multiplication commutes with the action of Π. It turns out that this construction turns
E into a free k[ε]-module with an action of Π, thus defining a representation Π →
GLn(k[ε]). A little more work shows:

Proposition 3.3. There are canonical isomorphisms

tDΛ
..= DΛ(k[ε]) ∼= H1(Π,Ad(ρ)) ∼= ExtΠ(ρ, ρ)

of k-vector spaces.
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