
Overconvergent modular symbols and the eigencurve
Chris Williams

These are notes from a talk I gave at the Seminari de Teoria de Nombres in Barcelona, January
2017, as part of a study group on Hida families. We introduce modular symbols and overconvergent
modular symbols, and use them to construct the eigencurve, following work of Stevens. In particular,
we define overconvergent modular symbols on suitable affinoid opens in weight space and show that
any cuspidal classical eigenform can be deformed into such a family. We then define the local pieces
of the eigencurve to be the spectrum of the corresponding Hecke algebra. In this way, we construct a
rigid curve whose points correspond to systems of Hecke eigenvalues in the spaces of overconvergent
modular symbols of varying weights. This account is essentially detail-free, and rather is an attempt
to paint a broad overview of the theory.

Introduction
It is convenient to begin by immediately fixing notation. For the remainder of these notes, we take
p to be a rational prime, Γ = Γ0(N)with p|N , and f ∈ Sk(Γ) a cuspidal eigenform with Upf = apf .

In previous talks, we saw an introduction to the theory of Hida families, and in particular, showed
that ordinary modular forms exist in p-adic families. Recall that an eigenform is ordinary if vp(ap)
is zero. The goal of these notes is to give a sketch of a generalisation of this theory. In particular,
we have two, quite parallel, goals:
(1) Find familes of forms when 0 ≤ vp(ap) <∞, the so-called finite slope case, and
(2) Give an introduction to a geometric framework for studying p-adic families, that is, the theory

of eigenvarieties.
This more geometric framework ultimately allows vast generalisations of the theory, and turns out
to be a very powerful tool.

There are two main ways of pursuing these goals. The first, through the use of Coleman’s over-
convergent modular forms, is more geometric in nature and predated the second, Stevens’ more
algebraic approach using overconvergent modular symbols. We concentrate on the latter here.

Disclaimer: as in the corresponding talk, these notes will be very heavy on sketchy arguments,
hand-waving and general hand-waving, and (extremely) light on detail. They have also not been
checked very carefully and are almost certain to contain mistakes; they are intended only as a
snapshot of the theory. Joël Bellaïche has written some excellent and detailed notes in [Bel10],
which are also very accessible, and which the author whole-heartedly recommends.

1. Weight space
We begin with a very gentle introduction to a more geometric interpretation of p-adic families.
The general idea is to put the notion of ’p-adic variation of weights’ onto a more solid geometric
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footing. In particular, let’s suppose there is some ‘p-adic topological space’ of weights W; it then
makes sense to consider a p-adic family of ‘things’ to be a collection of objects (fκ)κ∈W such that
‘fκ varies continuously in κ.’ To make this more precise, we exploit a fairly standard trick; for the
correct notion of p-adic space, we should be able to consider the ring

R = O(W)

of regular functions on W, and note that for each element κ ∈ W, we have an evalution map
evκ : R −→ L (for some suitable field L of coefficients). The idea is then to define a ‘big object’
F over this ring R, as then the collection (evκ(F ))κ∈W will be a p-adic family, in the vague sense
given above.

In practice, we typically consider open subsets W ⊂ W, and look for families over this smaller
space, which is often a more tractable problem.

Example: In fact, we’ve already seen this phenomenon earlier in the study group. In Francesc’s
talk, we saw that ordinary eigenforms are the specialisations of Λ-adic forms. Here, the correct
notion of weight space is

W(Zp) = Homcts(Z×p ,Z×p ),
which contains the integers (the ‘classical weights’) via the maps z 7→ zk (and, indeed, all pairs
(k, χ), where χ is a Dirichlet character of p-power conductor, via the maps z 7→ χ(z)zk). There is
a disc W ⊂ W(Zp) such that O(W ) = Zp[[X]] = Λ, and the evaluation map at a classical weight
(k, χ) is just the map X 7→ χ(u)uk − 1, where u = 1 + p. In this way we see a Λ-adic form as a ‘big
object’ parametrising its specialisations at classical weights.

Remark: The correct notion of ‘p-adic topological space’ for the purposes of this theory is given
by rigid geometry, a p-adic analogue of scheme theory. It turns out that there is a rigid space W
which, for any Zp-algebra L, has L-points given by

W(L) = Homcts(Z×p , L×).

To motivate this, note that we can consider a classical weight (k, χ) as a Hecke character ψ = χ| · |k :
Q×\A×Q −→ C× in a natural way. A p-adic weight should then be a character

ψ : Q×\A×Q −→ C×p .

Strong approximation says that A×Q = Q× · R>0 ·
∏
`
Z×` , and we see that:

(i) as R>0 is connected and C×p is totally disconnected, we must have ψ(R>0) = 1, and
(ii) the incompatibility of the p-adic and `-adic topologies for ` 6= p force the restriction of ψ to∏

6̀=p Z
×
` to factor through some finite quotient.

Accordingly, any such weight is given by its values on Z×p × (Z/M)×, for some integer M . We have
simply restricted to the case where M = 1 (the so-called case of ‘tame conductor 1’.

2. Modular symbols
Our aim is to give p-adic families of modular symbols. We given a brief recap of the theory. Define

∆0 ..= Div0(P1(Q)),

which we see as the space of paths between cusps, and note that this has a left action of Γ induced by
the action ( a bc d ) ·x = (ax+ b)/(cx+d) on P1(Q). For a right Γ-module V , we say a homomorphism

φ : ∆0 −→ V
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is Γ-invariant if
φ(γD)|γ = φ(D)

for all γ ∈ Γ and D ∈ ∆0. We call the space of such functions the space of V -valued modular
symbols of level Γ and denote this space by

SymbΓ(V ) ..= HomΓ(∆0, V ).

This definition is beautifully simple, but turns out to be incredibly powerful. In particular, for a
ring R define

Vk(R) ..= {polynomials of degree at most k over R},
which has an action of SL2(Z) by(

a b
c d

)
· P (z) = (a+ cz)kP

(
b+ dz

a+ cz

)
.

The dual space Vk(R)∗ hence inherits the dual action (on the right). To f ∈ Sk(Γ), we associate

φf : ∆0 −→ Vk(C)∗

{r} − {s} 7−→
[
P 7−→

∫ s

r

f(z)P (z)dz.
]

Then φf ∈ SymbΓ(Vk(C)∗), and in fact:

Theorem 2.1 (Eichler-Shimura). There is a Hecke equivariant isomorphism

SymbΓ(Vk(C)∗) ∼= Sk+2(Γ)⊕Mk+2(Γ),

for the natural Hecke action on the symbol space.

Remark: It is worth elaborating on what we’ve actually achieved here. A modular form is an
inherently analytic object; in a first course, they are usually introduced as holomorphic functions
on the upper half-plane. Their study shows that the spaces of modular forms have an incredibly
rich algebraic structure via the Hecke operators. A modular symbol, however, is a purely algebraic
object, with a very simple definition. In passing from a modular form to its associated modular
symbol, we’ve thrown away all of the analytic information. The Eichler-Shimura isomorphism tells
us that we’ve not thrown away too much of the data, however; in particular, we’ve retained all
of the Hecke information, and all of the rich algebraic structure. In this way, one could see the
space of modular symbols to be the ‘algebraic skeleton’ of the space of modular forms. Because the
definition is so simple, modular symbols often turn out to be easier to work with, nicer to compute
with and – for our purposes – more friendly to vary p-adically.

3. Overconvergent modular symbols
In our attempt to vary these spaces of modular symbols in p-adic families, we encounter two
immediate problems.

Problem 1: Coefficients in C.
Our spaces of modular symbols are complex vector spaces, and it’s essentially meaningless to talk
about p-adically varying arbitrary complex spaces.
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Solution: There is an involution ι on SymbΓ(Vk(C)), given by the action of (−1 0
0 1 ), and we see

that the space of modular symbols breaks up into plus and minus eigenspaces

SymbΓ(Vk(C)) ∼= Symb+
Γ (Vk(C))⊕ Symb−Γ (Vk(C)).

We accordingly get a decomposition φf = φ+
f + φ−f . Then:

Theorem 3.1 (Shimura). There exist complex periods Ω±f ∈ C× such that

φ±f /Ω
±
f ∈ Symb±Γ (Vk(F ))

for some number field F .

Henceforth, we’ll replace φ±f by φ±f /Ω
±
f and assume the coefficients are algebraic. Both of these

symbols are eigensymbols if φf is, since the Hecke operators commute with the involution.

Problem 2: Unbounded dimension.
The key result, which underpinned all of Hida’s remarkable theory of ordinary families, was that
the dimension of the ordinary subspace is (essentially) independent of the weight. This is patently
not the case in general. Indeed, the dimension of the space of modular forms of fixed level grows
linearly with the weight.

Solution: We are aiming for a space of ‘big objects’ akin to the space of Λ-adic forms, with surjective
maps to the spaces of modular symbols of any weight (at least, for any weight in an open subset
of the weight space). Since these spaces have unbounded dimension, we need to pass to an infinite
dimensional space. This is the space of overconvergent modular symbols.

Definition 3.2. For a Qp-algebra L, define

A(L) ..= {locally analytic functions Zp −→ L}.

Here a function is locally analytic if it can be written locally as a convergent power series.

This has an action of the semigroup

Σ0(p) ..=
{(

a b
c d

)
∈ M2(Zp) : p|c, p - a, ad− bc 6= 0

}
given by (

a b
c d

)
· f(z) = (a+ cz)kf

(
b+ dz

a+ cz

)
.

Note that this action is enough to give actions of both the group Γ and the Hecke operators. It
should look familiar: it is precisely the action we gave Vk(L) earlier. Note furthermore that Vk(L)
is a subset of A(L) and is preserved by the action of Σ0(p).

Note that the space A(L) is independent of the weight k, but that the action we put on it does
depend on k. We write A(L) for the space with this action. Ultimately, to put these spaces into
p-adic families, it is thus sufficient to p-adically interpolate this action as the weight varies.

As before, we dualise to get the coefficient system we actually want:
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Definition 3.3. Define
Dk(L) ..= HomctsA(L), L)

with dual action
µ|γ(f) ..= µ(γ · f).

Definition 3.4. Define the space of overconvergent modular symbols of weight k and level Γ, with
coefficients in L, to be the space SymbΓ(Dk(L)).

By dualising the inclusion Vk ⊂ Ak, we get a (Σ0(p)-equivariant) surjection

Dk(L) −→ Vk(L)∗,

and hence a (Σ0(p), hence Hecke-equivariant) specialisation map

ρ : SymbΓ(Dk(L)) −→ SymbΓ(Vk(L)∗).

The remarkable theorem giving meaning to all of this is the following:

Theorem 3.5 (Stevens). Let f ∈ Sk+2(Γ) be an eigenform, with associated modular symbols φ±f ∈
Symb±Γ (Vk(L)), for some sufficiently large L/Qp. Then there exists

ψ±f ∈ Symb±Γ (Dk(L))

such that
ρ(ψ±f ) = φ±f .

If vp(ap) < k + 1, then ψ±f is unique.

Remark: This is actually a butchering together of two remarkable theorems of Stevens, both found
in [PS12]. The first, his control theorem, says that the specialisation map is an isomorphism on the
slope < k+ 1 subspaces, whilst the second says that there is (almost!1) a bijection between systems
of Hecke eigenvalues occuring in SymbΓ(Dk) and the systems of Hecke eigenvalues occuring in the
space of overconvergent modular forms of weight k + 2. For our purposes, it’s enough to note that
the system of eigenvalues attached to any classical eigenform shows up in the corresponding space
of overconvergent modular symbols.

4. Modular symbols in p-adic families
Throughout this section, we’ll fix a nice open affinoid W = Sp(R) ⊂ W to work over. Here:
• R will be a Qp-affinoid algebra; the reader who hasn’t seen these before should just think of
R as being some power series ring over Qp.

• Sp(R) means the max spectrum of R, together with the associated rigid structure, which
we’ll not specify.

• In close analogy to the theory of schemes, R is the space of rigid functions O(W ) on W .
1There is, rather bemusingly, a single exception. There is a system of eigenvalues, which Stevens calls

Ecrit
2 , that appears in Symb−Γ (D0(Qp)), but not in the space of overconvergent modular forms of weight

2. This system of eigenvalues, also rather bemusingly, then doesn’t appear in the eigencurve of modular
symbols; it is not the specialisation of any family of modular symbols. Perhaps there’s an obvious reason
why these mutual bemusements should cancel out, but it is not apparent to the author!
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The take-home message is that we’ve now got a big ring R, which is a Qp-algebra, so we can talk
about A(R) and D(R). As we alluded earlier, the key step to varying spaces of overconvergent
modular symbols in families is going to be to interpolate the weight k actions of Σ0(p) as p varies,
and in particular, to answer:

Key question: Can we make sense of SymbΓ(D(R))? That is, can we define an action of Σ0(p)
on D(R) that commutes with the natural evaluation maps evk and the action of Σ0(p) on Dk(L)
at each k ∈W?

If the answer to this is yes (which, of course, it is), then an element of this space would play the
role of the ‘big objects’ from earlier, and we’d have the notion of p-adic families of overconvergent
modular symbols coming from evaluation maps evk : R→ L inducing maps

evk : SymbΓ(D(R)) −→ SymbΓ(Dk(L)).

Hence answering this question in the affirmative gives the p-adic families we desire. The key
observation is the following.

Definition 4.1. The inclusion W →W means that W ∈ W(R) = Homcts(Z×p , R×) is an R-valued
point of weight space2. Define θ to be the corresponding structure homomorphism

θ : Z×p −→ R×.

Remark: Note that any element κ ∈W (L) ⊂ W(L) is a max ideal of R, and hence gives rise to a
(quotient) map evκ : R → L, where L is the residue field (in this setting, we say that κ is defined
over L). Since κ ∈ W(L), it also corresponds to a homomorphism κ : Z×p → L× by definition. The
map θ is universal in the sense that the diagram

Z×p
κ

> L×

R×
evκ

>
θ
>

commutes, that is,
κ = evκ ◦ θ.

In this way, we see θ as parametrising the weight characters Z×p → L× for the elements of W (L).

Example: At risk of labouring the point, he most pertinent example is the following: suppose
the classical weight k ∈ W (L), and then note that when z ∈ Zp, a ∈ Z×p and c ∈ pZp, we have
a+ cz ∈ Z×p and

evk ◦ θ(a+ cz) = (a+ cz)k.

Now we can equip the space A(R) (of R-valued locally analytic functions on Zp) with an action of
Σ0(p) as follows; define

(γ · f)(z) ..= θ(a+ cz)f
(
b+ dz

a+ cz

)
.

2Whilst this is a standard notion, the author, who is not particularly geometrically minded, found this to
be a somewhat unnatural thing to get his head around. If any readers have a similar problem, the following
analogy might be comforting: given a scheme S, a k-valued point of S is a morphism Spec(k) → S.
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Remark: This interpolates the classical weight k actions in the following sense; viewing k as an
element of W (L), we define evk(f) ∈ A(L) by composing f : Zp → R with the evk : R → L, and
we see that

evk(γ · f)(z) = evk
(
θ(a+ cz)f

(
b+ dz

a+ cz

))
= (a+ cz)kevk(f)

(
b+ dz

a+ cz

)
= [γ · evk(f)](z).

By dualising, we get a natural action of Σ0(p) on Hom(A(R), R).

Definition 4.2. In a technical twist, define

D(R) ..= D(Qp)⊗̂QpR,

rather than the dual space Hom(A(R), R). (Apologies for the somewhat abrupt departure from the
previously agreed notation).

There is a natural injection D(R) ↪→ Hom(A(R), R), and this space is preserved under the action of
Σ0(p) (see [Bel12], Remark 3.1). Moreover, there are clear specialisation maps D(R)→ Dk(L) for
any classical weight k ∈W (L), which respect the actions of Σ0(p) (by the above remark). Hence:

Answer to key question: Yes!

Definition 4.3. A p-adic family of (overconvergent) modular symbols over W = Sp(R) ⊂ W is an
element of SymbΓ(D(R)).

A natural question now arises; which systems of Hecke eigenvalues can be put into a family in this
way?

Short answer:

Theorem 4.4 (Stevens). Let f ∈ Sk+2(Γ) be a classical eigenform. Then the system
of eigenvalues corresponding to f appears as the specialisation under evk of a family of
modular symbols over some affinoid W in W containing k.

Slightly more detailed answer:
Let’s be optimistic, and hope for the following:

Hope 4.5. Let ψf ∈ SymbΓ(Dk(L)) be an overconvergent modular eigensymbol. There exists an
affinoid W = Sp(R) of the form above and an element ψR ∈ SymbΓ(D(R)) that specialises to ψf
at weight k.

Here, however, we fall short and encounter reality.3

3Recall that the system of eigenvalues Ecrit
2 , which is defying expectations by refusing to live in a family,

is the exact same exceptional system that showed up for overconvergent modular symbols but not for
overconvergent modular forms. Ultimately, this ‘cancelling’ actually works to our advantage, since it means
that we don’t get an extra point in the eigencurve of modular symbols.
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Theorem 4.6 (Stevens). Hope 4.5 is true unless k = 0 and ψf corresponds to the system of
eigenvalues Ecrit

2 .

We’ll give a sketch of the proof of this below, but first, the relevant lines proving Theorem 4.4:

Proof. Theorem 4.4. This follows immediately from the previous results/observations that:
(i) the system of eigenvalues appears as φ±f in the space of modular symbols with coefficients in

L for L/Qp sufficiently large,
(ii) it hence appears as ψ±f in the space of overconvergent modular symbols,

(iii) and it is not the system Ecrit
2 , which is not classical.

Note that actually we can put both ψ+
f and ψ−f into p-adic families ψ+

R and ψ−R ; we don’t need to
be picky when it comes to cusp forms!

Proof. Theorem 4.6; sketch. We prove this theorem using cohomology. In particular, for (almost)
any right Γ-module V we have a functorial isomorphism

H1
c
(
YΓ, Ṽ

) ∼= SymbΓ(V )

(see [AS86]). In addition, at any fixed weight this specialisation map is surjective, and we have the
exact sequence

0→ D(R)
×uk

−−−−−→ D(R)→ Dk(L)→ 0,
where L = R/(uk) for the maximal ideal (uk) ⊂ R corresponding to k. Accordingly we can study
the specialisation map through the long exact sequence of cohomology attached to this short exact
sequence. This gives rise to an exact sequence

H1
c
(
YΓ, D̃(R)

) uk

−−−−−→ H1
c
(
YΓ, D̃(R)

)
−→ H1

c
(
YΓ, D̃k(L)

)
−→ H2

c
(
YΓ, D̃(R)

)
[uk].

Via Poincaré duality, we have

H2
c
(
YΓ, D̃(R)

) ∼= H0(Γ,D(R)),

where we’ve identified the topological homology of YΓ with the group homology of Γ in the usual
way. This is the space of Γ-coinvariants of D(R), and in particular is nothing but D(R)/IΓD(R),
where I is the augmentation ideal of the group ring Z[Γ]. We now use:

Lemma 4.7. There is an isomorphism

D(R)/IΓD(R) =
{

Qp : 0 ∈W (Qp),
0 : otherwise.

Proof. See [Bel10], Lemma IV.1.16.

As an immediate corollary, we see that in the above set-up, the specialisation map SymbΓ(D(R))→
SymbΓ(Dk(L)) is surjective if k 6= 0. If k = 0, then the cokernel is one-dimensional, and can be
shown to be spanned by Ecrit

2 . This completes the proof.
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5. The eigencurve
We now know that classical systems of eigenvalues live in p-adic families of modular symbols, in
the sense that there exists some ‘big modular symbol’ ψR ∈ SymbΓ(D(R)) specialising to an over-
convergent modular symbol with the same system of eigenvalues. What we have not said, though,
is anything about the behaviour of ψR under the Hecke operators. Obviously it’s very desirable
that this should be an eigensymbol in the natural sense, so that ψR actually parametrises a p-adic
family of eigensymbols. One can prove that this big symbol is an eigensymbol, and one way of
doing, due to Bellaïche so is to invoke the theory of eigenvarieties.

This, the last section of these notes, uses what we’ve done so far to give an introduction to the
eigencurve constructed using modular symbols. The reader is warned that, even by the sketchy
standards we’ve been adhering to thus far, for the remainder we’ll dispense with the technical
details altogether. The result, then, should be viewed simply as a sketch of what the eigencurve
should be. For the details, see [Buz07] (for the general eigenvariety machine) or [Bel10] (for the
eigencurve of modular symbols).

Consider the following motivation. Let’s pretend we’re equipped with p-adic paper so that we
can draw p-adic graphs, and use it to plot systems of Hecke eigenvalues appearing in the space of
overconvergent modular symbols. The x-axis will be the weight spaceW, and the y-axis will be the
slope of the system, that is, the (non-negative) real number vp(ap). The hope is that, as we plot
all of these points, the result is that we obtain something geometrically ‘nice’ (I intended to draw
a picture at this point, but failed to get round to it).

A point of this ‘eigencurve’ lies above some weight κ ∈ W, and – by definition – corresponds
to some system of Hecke eigenvalues appearing in SymbΓ(Dκ), that is, an eigensymbol in this
space. Coversely, any such eigensymbol gives rise to a point ’by construction.’ This motivates:

Aims: Find a p-adic (rigid analytic) curve C, together with a ‘weight map’ κ : C −→ W,
such that there is a bijection

{Points x ∈ C(L) with κ(x) = k} ←→ (1)
{Systems of Hecke eigenvalues occurring in SymbΓ(Dk(L))}.

In the remainder of these notes, we sketch how to make this aim a reality. We’ll use Hecke algebras.

Definition 5.1. Define the (abstract) Hecke algebra to be the Z-algebra generated by the Hecke
operators, that is,

H ..= Z[{T` : ` - N}, Up, {〈a〉 : a|N}].

This ring acts on basically everything in sight, and in particular, it acts on all of the spaces
mentioned previously. In fact, we have more.

Crucial fact: The Up operator acts compactly on all the spaces we’ve considered. Without this,
the whole theory would fall apart4.

4It’s worth pointing out that it is this which forces us to consider overconvergent modular forms in
the analytic setting. If we defined p-adic modular forms in perhaps the most natural way, as the p-adic
completion of the (integral) space of modular forms, then what we end up with is far too big, and in particular
the Up operator fails to act compactly. By demanding that these forms ‘overconverge’, the problem goes
away.
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In short, this means that the Up operator comes with a nice spectral theory, and in particular a
discrete spectrum of eigenvalues. A key consequence is the following:

Corollary 5.2. Let v ∈ R>0 and fix some classical weight k.
(i) There exists a slope decomposition for Up, that is, a direct summand

SymbΓ(Dk(L))≤v ⊂ SymbΓ(Dk(L))

that is a finite dimensional vector space over L.
(ii) In fact, there also exists W = Sp(R) ⊂ W, containing k, such that there exists a slope

decomposition
SymbΓ(D(R))≤v ⊂ SymbΓ(D(R)),

which is a finite flat R-module.
Colloquially, these are the subspaces where ‘Up acts with vp(ap) ≤ v’.

So we have nice finite structures. The Hecke operators also preserve slope decompositions, so we
have actions on these spaces too.

Definition 5.3. Define

T±W,v ..= image of H in End(Symb±Γ (D(R))≤v.

Similarly, define
T±k,v ..= image of H in End(Symb±Γ (Dk(L))≤v.

These are finite flat modules over R and L respectively.

Now for the key definition:

Definition 5.4. Define the local piece of the eigencurve (over W of slope ≤ v) to be

C±W,v ..= Sp(T±W,v).

We have a natural weight map κ : C±W,v → W induced by the structure map R → T±W,v by
functoriality.

So why does this do what we want? Let x ∈ C±W,v(L) be an L-point, that is, a maximal ideal m of
T±W,v with residue field L. The quotient map is an algebra homomorphism

φ̃ : T±W,v −→ T±W,v/m = L.

Suppose that κ(x) = k ∈ W (L), which says precisely that this factors through the localisation
T±W,v ⊗k,L L ⊂ T±k,v at the prime of R corresponding to k, that is, that there exists some algebra
homomorphism φ such that φ̃ is the composition

T±W,v −→ T±k,v
φ

−−−−−→ L.

But such a homomorphism, by definition, corresponds to a system of eigenvalues occuring in
Symb±Γ (Dk(L)). So we get such a system.

What about the converse? Well, let ψ be an eigensymbol in Symb±Γ (Dk(L)), giving rise to an
algebra homomorphism T±k,v → L. Assume ψ is not Ecrit

2 , so that we know that ψ is in the image
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of specialisation from Symb±Γ (D(R)) (for some R). Note also that T±W,v ⊗k,L L is simply the image
of T±W,v under the weight k evaluation map. Accordingly, we have

T±W,v
evk

−−−−−→ T±W,v ⊗k,L L ⊂ T±k,v
φ

−−−−−→ L,

and the condition that ψ is in the image of specialisation shows that the composition is non-zero.
Hence we obtain a maximal ideal m ⊂ T±W,v, and hence a point of C±W,v(L).

Hence the local piece of the eigencurve has the properties we wanted, away from Ecrit
2 ! We then

conclude by stating a gluing result:

Theorem 5.5 (Stevens (this case), Buzzard (general machine)). The local pieces C±W,v can be glued
together into rigid curves C±, and the weight maps glued into a weight map κ : C± →W, with the
properties of (1) above (though, of course, excluding the system of eigenvalues Ecrit

2 ).

Remarks: (i) It would be remiss to talk about the eigencurve in any capacity and not mention
the original results of Coleman and Mazur, who gave the original construction using overcon-
vergent modular forms. They construct a cuspidal eigencurve C0 living inside the eigencurve
C itself. Results of Chenevier show that in fact

C0 ⊂ C± ⊂ C, C+ ∪ C− = C.

(ii) As promised, I’ve failed to mention any of the details. In particular, I’ve failed to mention
some of the modules we actually need to carry out Buzzard’s machine – in particular, the
Banach module of distributions of order r – and the compatibility of symbol spaces over
affinoids with changing the affinoid (Buzzard’s theory of links).

(iii) The ‘eigenvariety’ version of the theory generalises hugely to other settings!
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