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Abstract
In the classical theory of elliptic curves over C, we prove that every complex elliptic

curve is the quotient of the plane by a lattice. In this essay, a corresponding theory
over p-adic fields - due to Tate - is discussed, using the theory of p-adic analysis to show
that every p-adic elliptic curve with non-integral j-invariant can be uniformised as a
quotient of K∗ by a multiplicative subgroup. We then look at beginning to generalise
this result to higher genera using automorphic forms, proving that for a Schottky
group Γ, there is a space Ω ⊂ P1

Cp on which Γ acts discontinuously, giving rise to a
smooth, irreducible algebraic curve Ω/Γ.
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Introduction
In the classical theory of elliptic curves over C, it is proved that every complex elliptic curve
is the quotient of the plane by a lattice. Such a property is incredibly useful; for example, it
allows us to describe the torsion of the curve, and it forms a basis for the study of complex
multiplication. In this essay, we give an analogue for p-adic fields due to John Tate, and
discuss David Mumford’s generalisation to higher genera.

Part I is largely preliminary. In Chapter 1, relevant definitions and results on elliptic
curves are stated, before some results about more general curves and their function fields
- including a correspondence between points on the curve and places of its function field -
are given. The crucial result for the remaining work is Theorem 1.18, which says that for
an algebraically closed field K and a function field L of one variable and genus g over K,
there is a smooth, irreducible curve V with L = K(V ).

Chapter 2 focuses on the complex case, considering an alternative approach using the ex-
ponential function. We also obtain formulae that are used in Part II to calculate invariants
of a uniformised curve, and thus find necessary and sufficient conditions for uniformisation.

In Part II, we prove Tate’s uniformisation theorem for elliptic curves: namely, that for
any elliptic curve E over a p-adic field K with split multiplicative reduction and non-
integral j-invariant, ∃q ∈ K∗ such that E ∼= K∗/qZ. Thus for any elliptic curve E/K there
is (at worst) a quadratic extension L/K with E ∼= K∗/qZ over L.

In Chapter 3, the theory of p-adic analysis is developed. We quote Schnirelmann’s structure
theorem, that says any meromorphic function on K∗ can be described (up to a multiplica-
tive constant) entirely in terms of its zeros and poles. We then prove that the field of
q-periodic meromorphic functions is a function field of one variable and genus 1, and thus
prove that K∗/qZ is an elliptic curve. In Chapter 4, this curve is shown to satisfy the
equation Eq : Y 2 + XY = X3 + BX + C, with non-integral j-invariant and trivial Hasse
invariant. We then collate these results in Chapter 5 to prove the uniformisation theorem.

The generalisation of this work to higher genera was described by Tate himself as ‘far
from obvious’, and it indeed it required a very different approach by Mumford to give an
answer to the problem. His work used the language of schemes and rigid analysis to prove
that for any curve with split degenerate reduction, there is a Schottky group Γ (a finitely
generated discontinuous subgroup of PGL2(K) with no elements of finite order) and a space
Ω ⊂ P1

Cp on which Γ acts discontinuously, with Ω/Γ an algebraic curve. It turns out we can
take Ω = P1

Cp\L, where L is the set of limit points of Γ.

In Part III, a partial account of Mumford’s work is given in a more down-to-earth set-
ting - in which we can draw parallels with the work done in Part II. We will show that,
for Ω and Γ as above, that Ω/Γ is an algebraic curve of genus g (where g is the number of
generators of Γ, which is necessarily free; see Chapter 7). To do so, we consider Cp(Ω/Γ),
the field of Γ-invariant meromorphic functions on Ω, and show that it is a function field of
one variable and genus g over Cp, giving the result.

Chapter 6 defines the tree of a compact subset of P1
K . We associate to such a set a lo-

cally finite tree T (X) and show that there is a bijection between halflines in T (X) and
limit points of X. Chapter 7 then introduces Schottky groups. We prove that, for suitable
X, Γ acts on the tree T (X) and that T (X)/Γ is finite with universal cover T (X) and
group of covering translations Γ. Thus any such group is free on g generators, say. We then
construct a good fundamental domain F for Γ by cutting 2g disjoint discs out of the pro-
jective line, demanding that they satisfy suitable properties in relation to the generators.

ii
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Importantly, this gives us a workable notion of Ω as the union⋃
γ∈Γ

γ(F ),

and shows that Γ acts discontinuously on Ω.

Chapter 8 then focuses on holomorphic/meromorphic functions on Ω, before constructing
automorphic forms

θ(a, b; z) =
∏
γ∈Γ

z − γ(a)
z − γ(b)

for Γ, where a, b ∈ Ω. A structure theorem for such automorphic forms is proved, that
says any automorphic form for Γ is (up to a multiplicative constant) a finite product of the
θ(a, b; z).

We then conclude in Chapter 9 that the field of Γ-invariant meromorphic functions is a
function field of one variable and genus g (the number of generators of Γ). To do so,
we construct a single non constant Γ-invariant meromorphic function h and show that
Cp(Ω/Γ) is an algebraic extension of Cp(h). The result on the genus is stated via a version
of the Riemann-Roch theorem. Thus Ω/Γ is a smooth irreducible algebraic curve of genus g.

As mentioned before, whilst we are able to give a complete account of the uniformisa-
tion theorem in the genus 1 case, we can merely scratch the surface of the generalisation to
higher genera. Mumford’s results were part of a body of work that were to earn him the
Fields Medal in 1974.
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PART I: MOTIVATION AND PREREQUISITES

1. Preliminaries on Curves

1.1. Elliptic Curves
In this brief introductory section, we discuss the theory of elliptic curves and state some of
the fundamental properties that we will later use throughout Part II.

Definition 1.1. An elliptic curve E/K is a smooth projective curve of genus 1 over a field
K, together with a K-rational point O.

Theorem 1.2. (i) Let (E,O) be an elliptic curve. Then there exist constants a1, a2,
a3, a4 and a6 ∈ K and an isomorphism

φ : E −→ E(K) = {[X : Y : Z] ∈ P2
K : F (X,Y, Z) = 0} ⊂ P2

K

with φ(O) = [0 : 1 : 0], and where

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 − (X3 + a2X

2Z + a4XZ
2 + a6Z

3).

We say that a curve of this form is in Weierstrass form.

(ii) Conversely, any equation in the form F above gives rise to an elliptic curve over K,
with K-rational point [0 : 1 : 0].

Proof. This is a consequence of Riemann-Roch. For further details, see [6], III.3.

It is convenient to pass to an affine piece via the change of variables x = X/Z, y = Y/Z. In
the case where the characteristic of K is not 2 or 3, via simple substitutions (i.e. completing
the square and cube), we obtain:

Corollary 1.3. Let E/K be an elliptic curve over a field K of characteristic not equal to 2
or 3. Then the set of K-rational points can be described as

E(K) = {(x, y) ∈ K2 : f(x, y) = 0} ∪ O,

where f(x, y) = y2 + xy − x3 −Bx− C and B,C ∈ K.

Remark 1.4: We could also remove the xy term as well; however, in future chapters we
will work with curves defined by equations including such a term, so it is convenient to
develop the theory whilst incorporating it.

It is natural to ask the question of when two Weierstrass cubics, as above, give rise to
isomorphic elliptic curves. It turns out we can characterise different Weierstrass forms of a
given curve E by a simple change of variables.

Proposition 1.5. Any two Weierstrass equations for E can be related by a linear change
of variables

x′ = u2x+ r, y′ = u3y + u2sx+ t,

where u ∈ K∗ and r, s, t ∈ K.

Proof. See [6], III.3.1.

1
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From now on, we assume that K has characteristic 0, i.e. we are in the case above (this
certainly includes C and the p-adic fields, which are the ones we are interested in). We now
assign three fundamental constants to an elliptic curve of the form given in Corollary 1.3:

Definition 1.6. Suppose E/K is an elliptic curve given in general Weierstrass form. Define
quantities

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.

Define the discriminant of E to be

∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

the j-invariant of E to be
j(E) = c34/∆,

and the Hasse invariant of E to be

γ(E/K) = −c4
c6

Lemma 1.7. Up to a different choice of Weierstrass form:

(i) The j-invariant j(E) is well-defined,

(ii) The Hasse invariant γ(E/K) is well-defined up to squares (i.e. it gives a well-defined
element of K∗/(K∗)2).

Proof. See [6], III.1, Table 3.1.

Remark 1.8: For a curve in the form given in Corollary 1.3, it is easily checked that these
quantities satisfy

∆ = B2 − C − 64B3 + 72BC − 432C2,

j = (1− 48B)3

∆ .

We conclude this section by stating a fundamental result that we will require in later
chapters to complete the uniformisation theorem.

Theorem 1.9. (i) A curve given in Weierstrass form is nonsingular if and only if ∆ 6= 0.

(ii) Two elliptic curves with j-invariant 6= 0, 1728 are isomorphic over K if and only if
they have the same j-invariant and Hasse invariant.

(iii) If K is algebraically closed, then two elliptic curves are isomorphic over K if and only
if they have the same j-invariant.

Proof. For (i), (iii) see [6], III.1.4. For (ii), see [7], V.5.2.

2
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1.2. Algebraic Curves
In this section, we state some results on the theory of algebraic curves (algebraic varieties
whose function fields have transcendence degree 1 over the base field). The main result we
require is that for any such function field L/K, there is a smooth irreducible curve V with
L = K(V ) its function field. We construct V by considering the set of normalised discrete
valuations and showing it has the required algebraic structure.

Recall that if V is an algebraic variety, then P ∈ V is smooth if and only if the local
ring of V at P , OV,P , is a regular local ring. So, in the case where V is an algebraic
curve, as the transcendence degree of K(V ) over K is 1, we have that the maximal ideal
is generated by 1 element; thus OV,P is a discrete valuation ring, and we obtain a discrete
valuation on K(V )/K, centred at P . It turns out that when V is an irreducible smooth
curve, this accounts for all normalised discrete valuations on K(V )/K, as summarised in:

Theorem 1.10. Let V be an irreducible smooth curve. There is a bijection

{Points on V } ←→ {Normalised discrete valuations on K(V )/K}.

In particular, every such valuation on K(V )/K is centred at a point of V .

Proof. See [3], I.1.18.

We now turn to another invariant of a function field, namely the genus. This is characterised
by the Riemann-Roch theorem, which we will state in its most relevant form. First, we
must define the notion of a divisor on a function field. Throughout, L will be a function
field over K with transcendence degree 1, with K algebraically closed, and A the set of
normalised discrete valuations on L/K.

Definition 1.11. A divisor on A is a formal finite sum of points of A, i.e. it has form

d =
∑
v∈A

nv(v), nv ∈ Z,

with all but finitely many of the nv = 0. We define the degree of a divisor to be

deg(d) =
∑
v∈A

nv.

Denote the group of divisors on A (under the operation of addition) by Div(A).

Definition 1.12. Let
d =

∑
v∈A

nv(v), d′ =
∑
v∈A

n′v(v)

be divisors on A. We say that d ≤ d′ if nv ≤ n′v ∀v ∈ A. We say d is effective if d ≥ 0.

Definition 1.13. Let f ∈ L. Define the principal divisor associated to f to be

div(f) =
∑
v∈A

v(f)(v).

It is a simple check to show that this is well-defined (see [2], I.6.5).

Definition 1.14. Let d ∈ Div(A). Define

L(d) = {f ∈ L : div(f) ≥ −d},

a K-vector space.

3
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We have the tools in place to state a version the Riemann-Roch theorem:

Theorem 1.15 (Riemann-Roch). Let d ∈ Div(A). Then there is a constant g ∈ N such
that if deg(d) > 2g − 2,

dimK L(d) = deg(d)− g + 1.

Definition 1.16. We call this g the genus of the function field.

Remark 1.17: If V is a plane curve, the correspondence in Theorem 1.10 shows that the
definitions of divisors on V and K(V ) (and hence genus) coincide.

We can now state the main result we need:

Theorem 1.18. Let L/K be a function field of one variable. Then there is an irreducible
smooth projective curve V such that L = K(V ). Furthermore, the genus of L/K = the
genus of V .

Proof. For the existence of V , see [2], I.6. The result on the genus follows from Remark
1.17.

Remark: In particular, if L/K is a function field of one variable and genus 1, then it is
the function field of some elliptic curve. For a direct proof of this fact, see [3], II.2.17.

4
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2. Complex Uniformisation: A Review
In this chapter, we review the theory of complex uniformisation. We recall results from
the study of Riemann surfaces, before explaining why this approach immediately fails over
p-adic fields. We then consider uniformising complex elliptic curves over C∗ via the expo-
nential map, and derive series expansions to describe an explicit map for this new approach
- which will then carry over to the p-adic case, as required.

2.1. Complex Tori & Elliptic Curves
We begin by stating results about the Weierstrass ℘-function.

Definition 2.1. Let Λ ⊂ C be a lattice. The Weierstrass ℘-function with respect to Λ is
defined to be

℘(z; Λ) = 1
z2 +

∑
ω∈Λ\{0}

(
1

(z − ω)2 −
1
ω2

)

Proposition 2.2. ℘ is elliptic with period Λ and is holomorphic on C\Λ, with a double
pole at each z ∈ Λ.

Proposition 2.3. ℘ satisfies the equation

(℘′)2 = 4℘3 − g2(Λ)℘− g3(Λ),

with g2, g3 constants that depend only on Λ.

This leads to the idea of complex uniformisation; define

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ),

and note we have a well defined map

C/Λ −→ EΛ,

z 7→ (℘(z; Λ), ℘′(z; Λ)).

It turns out that this is an isomorphism of groups (and a complex analytic isomorphism of
Riemann surfaces). The complex uniformisation theorem now states:

Theorem 2.4 (Complex Uniformisation). Let E : y2 = x3 +Ax+B with 27B2 + 4A3 6= 0.
Then there exists a lattice Λ ⊂ C such that E ∼= EΛ; that is to say,

g2(Λ) = −4A, g3(Λ) = −4B,

and the map
C/Λ −→ E, z 7→ (℘(z; Λ), 1

2℘
′(z; Λ))

is a complex analytic isomorphism.

Proof. See [7], I.4.3.

Thus every complex elliptic curve is isomorphic to the quotient of C by a lattice.

5
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2.2. q-Expansions of Elliptic Curves
We would like to develop this theory for p-adic fields. Unfortunately, we are forced to
abandon this idea immediately; indeed, let Λ ⊂ Qp be a discrete additive subgroup, and
suppose 0 6= x ∈ Λ. Then px, p2x, p3x, ... is a sequence in Λ tending to 0; that is, there are
no non-trivial discrete subgroups of Qp. So we must change our approach. We return to
the complex case.

A consequence of the theory above ( [6], VI.4.1.1) is that homothetic lattices give the
same elliptic curve. Thus we can normalise our lattice Λ = 〈1, τ〉, with imaginary part
=(τ) > 0. Write ℘(z, τ) = ℘(z,Λ); then

℘(z + 1; τ) = ℘(z; τ),

that is, we can consider ℘ as a function of u = e2πiz. We also have

℘(z, τ + 1) = ℘(z; τ),

so we can consider q = e2πiτ , and find a Fourier expansion of ℘ in terms of u and q. Note
|q| < 1. This consideration induces an isomorphism

C/Λ −→ C∗/qZ,

z 7→ e2πiz.

Our main task now is to determine an explicit formula for ℘ in this new context. We want
a function F (u; q) that satisfies

(i) F (qu; q) = F (u; q), and

(ii) F has a double pole at each u ∈ qZ, but is holomorphic outside of this.

The main idea in constructing such a function is to find a suitable function satisfing (ii) at
1 and then “averaging," adjusting where necessary to ensure convergence. The most basic
function with a double pole at 1 is 1

(1−X)2 , which leads us to consider the series

∑
n∈Z

1
(1− qnu)2 .

Unfortunately this does not converge as n → −∞. We need instead to consider X
(1−X)2 to

ensure convergence; it can be shown ( [7], I.6.1) that

F (u, q) =
∑
n∈Z

qnu

(1− qnu)2

converges absolutely and uniformly on compact subsets of C∗\qZ, and satisfies (i) and (ii).

We now relate this function back to ℘. By considering the start of the Laurent series
of ℘, we obtain

1
(2πi)2℘(u; q) = F (u; q) + 1

12 − 2
∑
n∈Z

qn

(1− qn)2 ,

as their difference is holomorphic and elliptic (hence constant), and is thus identically zero
since it vanishes at 0. We also require a q-expansion for ℘′. We use d

dz = d
du

du
dz = 2πiu d

du ,
and obtain

1
(2πi)3℘

′(u; q) =
∑
n∈Z

qnu(1 + qnu)
(1− qnu)3 .

6
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We now make a change of variables, removing the powers of (2πi)3 and the term 1/12:

1
(2πi)2x = x′ + 1

12 ,

1
(2πi)3 y = 2y′ + x.

Under this substitution, the equation y2 = 4x3 − g2x− g3 becomes

y′2 + x′y′ = x′3 +B(q)x′ + C(q),

for B,C functions of q (see Remark 1.4). Note that Proposition 1.5 says that this change
induces an isomorphism of the corresponding curves.

We conclude:

Theorem 2.5. Define series

X(u; q) =
∑
n∈Z

qnu

(1− qnu)2 − 2
∑
n≥1

qn

1− qn ,

Y (u; q) =
∑
n∈Z

(qnu)2

(1− qnu)3 +
∑
n≥1

qn

1− qn .

Then the map
C∗/qZ −→ Eq : y2 + xy = x3 +B(q)x+ C(q),

u 7→
{

(X(u; q), Y (u; q)) : u 6∈ qZ
O : u ∈ qZ

is an isomorphism.

7
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PART II: THE UNIFORMISATION THEOREM

3. p-adic Analysis
Most of the preliminary work we have done so far is over arbitrary fields. We now specialise
to the p-adic fields, i.e. finite extensions of Qp for a prime p. In this chapter, we will
develop the theory of p-adic analysis, including holomorphic/meromorphic functions over a
p-adic field K, and quote Schnirelmann’s structure theorem for convergent Laurent series.
We will then focus on the field of q-periodic meromorphic functions for some q ∈ K, |q| < 1,
and show that it is an elliptic function field, i.e. that it is a function field in one variable
of genus 1 over K (and all finite extensions of K). We shall thus obtain an elliptic curve
using Theorem 1.18, and show that Eq ∼= K∗/qZ.

3.1. Definitions and Schnirelmann’s Theorem

In what follows, Cp is the completion of Qp. Note that this is itself algebraically closed
(see [3], II.4.16).

Definition 3.1. (i) A holomorphic function on K is defined by a Laurent series∑
n∈Z

anX
n, an ∈ K,

that converges for all x ∈ Cp. We write HK for the domain of holomorphic functions
on K.

(ii) Let MK = Frac(HK), and say the elements of MK are meromorphic functions on K.

Lev Schnirelmann proved a fundamental result about the structure of these functions, the
proof of which we omit:

Theorem 3.2 (Schnirelmann). Let f(X) =
∑
n∈Z

anX
n, an ∈ K, be a Laurent series that

converges ∀x ∈ C∗p. Then f can be written in the form

f(X) = cXk
∏
|α|<1

(1− α

X
)
∏
|α|≥1

(1− X

α
),

where the product is over {α : f(α) = 0}.

Proof. See [3], II.4.16.

Remark 3.3: The non-archimedean property of the valuation on K makes the theory
of series considerably easier than the corresponding case over C. In particular, |f(x)| =
|
∑
anx

n| ≤ max{|anxn|}, with equality if there is a strict maximum. We see that in
particular, f can only be zero on critical spheres |x| = r, where there exists m,n ∈ Z such
that |amrm| = |anrn| = maxi(|aixi|). It can be shown that there is a finite, non-empty
set of zeros on each of these critical spheres (see the proof of Schnirelmann). In particular,
Schnirelmann says that any meromorphic function has form

f(X) = cXk
∏
|α|<1

(1− α

X
)mα

∏
|α|≥1

(1− X

α
)mα ,

where the product is over all α ∈ C∗p, and the mα satisfy

8
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(i) Only finitely many mα 6= 0 in an annulus 0 < r ≤ |α| ≤ r′ <∞;

(ii) mα = mσ(α) ∀σ ∈ Gal(K/K).

Definition 3.4. Let q ∈ K with |q| < 1. A meromorphic function f ∈ MK is said to be
q-periodic if it satisfies

f(q−1X) = f(X).

Denote the space of q-periodic functions on K by LK(q).

3.2. Divisors and Theta functions
Every point α ∈ K∗ gives rise to a discrete normalised valuation on MK/K, namely ordα,
the order of vanishing at α. Such a set of valuations leads to a natural definition of the
divisor of a meromorphic function f .

Definition 3.5. Let f ∈MK . Then define

div(f) =
∑
α∈C∗p

mα(α),

where mα = ordα(f).

Remark: The integers mα satisfy conditions (i), (ii) of remark 3.3. In general, we say any
such collection of integers

{mα : α ∈ C∗p}

that satisfy these conditions is a divisor over K. Call the space of such divisors Div(K∗).

Note that the definitions of ‘effective divisor’ and the vector space L(d) carry over directly
from Chapter 1.2.

Proposition 3.6. Let d be a divisor over K. Then ∃ 0 6= f ∈MK such that d = div(f).

Proof. (sketch). Construct such a function using Schnirelmann. (See [4], p11).

The following are two crucial definitions on the subsequent theory.

Definition 3.7. We say a divisor is q-periodic if

mq−1α = mα ∀α ∈ C∗p,

and write Div(K∗/qZ) for the space of q-periodic divisors over K.

Definition 3.8. A theta function for q is a meromorphic function with a q-periodic divisor.

Remark: Suppose θ is a theta function for 1 with divisor d. Then let θ′(X) = θ(q−1X). θ
and θ′ have the same zeros and poles, so by Schnirelmann,

θ′(X) = c−1(−X)dθ(X).

9
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Proposition 3.9. There are well defined homomorphisms

dq : Div(K∗/qZ) −→ Z

d 7→ d,

φq : Div(K∗/qZ) −→ K∗/qZ

d 7→ c (mod qZ).

Proof. Schnirelmann tells us that if θ′′ is a general function with divisor d, then

θ′′(X) = bXkθ(X).

Thus we have
θ′′(X) = bq−kXkc−1(−X)dθ(X)

= (cqk)−1(−X)dθ′′(X),
i.e. we see that we can associate to d a well-defined integer d and a well-defined value of
c (mod qZ). The maps we obtain are clearly homomorphisms.

We can describe these homomorphisms more explicity:

Lemma 3.10. (i) The map dq is the degree homomorphism that maps

d 7→
∑

|q|<|α|≤1

mα.

(ii) The map φq is the Abel-Jacobi homomorphism that maps

d 7→
∏

|q|<|α|≤1

αmα .

[Note that these are finite by condition (i) of 3.3.]

Proof. Consider the most basic theta function, namely

θ0(X) =
∏
n≤0

(1− qnX−1)
∏
n>0

(1− q−nX),

with div(θ0) = (1). A simple check shows that θ0(q−1X) = −Xθ0(X), i.e.

dq((1)) = 1, φq((1)) ≡ 1 (mod qZ).

Now put θα(X) = θ0(α−1X), i.e. div(θα) = (α). Now

θα(q−1X) = (αq)−1(−X)θα(X),

hence dq((α)) = 1, φq((α)) ≡ α (mod qZ).

Now take a general divisor d =
∑
mα(α). We easily see that

∏
(θα)mα is a theta function

for d. Then
dq(d) =

∑
mα = deg(d),

φq(d) =
∏

αmα ,

over suitable limits, as required.

Corollary 3.11. A q-periodic divisor d =
∑
mα(α) ∈ Div(K∗/qZ) is the divisor of a

q-periodic function
⇐⇒ deg(d) = 0,

∏
αmα ≡ 1 (mod qZ).

10
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3.3. Constructing the Curve
Thus far we have constructed the field LK(q) of q-periodic meromorphic functions on K∗,
and shown that their divisors satisfy a fairly strong condition. We are in a position to
describe the genus of LK(q), using Riemann-Roch and the following:

Lemma 3.12. Let d ∈ Div(K∗/qZ) be a q-periodic divisor over K, with deg(d) > 0. Then

dimK L(d) = deg(d).

Proof. Induct on deg(d). We see that we can, in fact, adapt the statement to expand it to
deg(d) = 0; Corollary 3.11 tells us that we have proved

dimK L(d) = deg(d) = 0,

provided φq(d) 6≡ 1 (mod qZ).

Now suppose deg(d) = d, and we have proved the result for all divisors of degree d− 1. Let
a = φq(d), and pick b 6≡ 1, a (mod qZ). Then

deg(d− (b)) = d− 1⇒ dimK L(d− (b)) = d− 1.

(Note induction holds at d = 1 since φq(d − (b)) 6≡ 1 (mod qZ).) We see that L(d − (b)) is
the kernel of the linear map

L(d) −→ K, f 7→ f(b).

Rank-nullity implies we need only prove surjectivity to complete the proof. But

(d− 1)(1) + (a)− d

is a principal divisor whose associated function f does not vanish at b; hence f has non-zero
image in K, i.e. the map is surjective.

We’d like to conclude that LK(q) has genus 1 over K. But Riemann-Roch is a statement
about algebraically closed fields. We must show that the lemma holds for any enlargement
of the field of constants, as then it holds over the algebraic closure (the union of all finite
extensions).

Proposition 3.13. Let F/K be a finite extension. Then LK(q) · F = LF (q). (i.e. if we
extend the field of constants via a finite extension F of K, we obtain the q-periodic functions
on F).

Proof. Pick u1, ..., un a basis for F/K. Then the uj also give a basis of HF /HK and
MF /MK . If f ∈MF , write

f =
∑
i

uifi, fi ∈MK .

Then linear independence of the uj gives that f q-periodic if and only if fi q-periodic for all
i. Thus the uj also give a basis of LF (q)/LK(q), that is, LF (q) = LK(q) ·F , as required.

Corollary 3.14. LK(q) has genus 1 over K.

11
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We’ve now proved that there is some elliptic curve, say Eq, such that LK(q) ∼= K(Eq). We
need to show that Eq ∼= K∗/qZ. To do so, we recall the correspondence

{Points on Eq} ←→ {normalised discrete valuations on LK(q)} = A(LK(q)).

Lemma 3.15. There is an isomorphism

K
∗
/qZ −→ A(LK(q)) −→ Eq(K),

α 7−→ ordα 7−→ Pα,

where ordα is centred at Pα.

Proof. The second map, and hence the composite, is injective, since Eq is smooth (the first
map is clearly injective).

Surjectivity: take a point Q in Eq(K). Then take a function

f ∈ L(2Q)\K,

where we note 2Q is a divisor in the usual sense on the curve. Such a function exists by
3.12. Schnirelmann says that such a function must have a pole in K∗/qZ. But if Q is not
in the image, then there is no point of K∗/qZ that gives rise to a valuation centred at Q,
i.e. there is no pole in K∗/qZ, contradiction. Thus the map is bijective and we obtain the
required isomorphism.

Corollary 3.16. Eq(K) = K∗/qZ.

Proof. Take Gal(K/K) invariants in 3.15.

12



P -adic Uniformisation of Curves Chris Williams

4. Invariant Calculations
The remaining work in the uniformisation theorem comes in determining which p-adic
elliptic curves can be written in the form K∗/qZ. In this (somewhat technical) chapter, we
will use formulae from complex uniformisation (see chapter 2) to define the ‘Tate map’, an
explicit isomorphism K∗/qZ −→ Eq(K), and use it to determine the j-invariant and Hasse
invariant of Eq. We thus obtain the necessary condition that any p-adic elliptic curve that
can be uniformised in this way has non-integral j-invariant and trivial Hasse invariant (we
see in chapter 5 that these conditions are in fact sufficient).

4.1. The Tate Map
Recall 2.5; we defined series

X(u; q) =
∑
n∈Z

qnu

(1− qnu)2 − 2
∑
n≥1

qn

1− qn ,

Y (u; q) =
∑
n∈Z

(qnu)2

(1− qnu)3 +
∑
n≥1

qn

1− qn ,

and obtained an isomorphism

C∗/qZ −→ Eq(C) : y2 + xy = x3 +B(q)x+ C(q),

u 7→
{

(X(u; q), Y (u; q)) : u 6∈ qZ
O : u ∈ qZ

Recall also Theorem 1.18, which says that a genus 1 function field L of one variable over
an algebraically closed field K is the function field of some elliptic curve. In the proof, we
take an arbitrary principal divisor (say d = (1)) and consider

x ∈ L(2d)\K, y ∈ L(3d)\L(2d),

obtaining that L = K(x, y). Details of this approach are in [3], II.2.17.

Now X(u; q) has a pole of order 2 at 1 (mod qZ), and Y (u; q) a pole of order 3. It fol-
lows that

LK(q) = K(X,Y ),

with the relation
Y 2 +XY = X3 +B(q)X + C(q) (see 2.5).

Note that as |q| < 1, the series for X,Y obviously converge to a limit in the complete field
K(u, q) (a finite extension of K). So we see that the equation above is satisfied p-adically
by considering it as an identity of formal power series (and using the complex case). We
conclude:

Theorem 4.1 (Tate). Let K be a p-adic field, and let X(u; q) and Y (u; q) be as above.
Then the map

K∗/qZ −→ Eq(K) : y2 + xy = x3 +B(q)x+ C(q),

u 7→
{

(X(u; q), Y (u; q)) : u 6∈ qZ
O : u ∈ qZ

is an isomorphism.

13
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4.2. Calculating the j-invariant
To calculate the j-invariant, we need to find explicit formulae for B(q), C(q) in 4.1; then
we can use Remark 1.8 to conclude.

Definition 4.2. Let sk(q) =
∑
n≥1

nkqn

1−qn .

Lemma 4.3. We have the equalities:

(i) B(q) = −5s3(q),

(ii) C(q) = − 1
12 [5s3(q) + 7s5(q)].

Proof. Define D = u d
du , a differential operator. Note (via a simple check) that

Y = 1
2(DX −X),

that is,
(DX)2 −X2 = 4(X3 +BX + C). (1)

Observe that
qnu

(1− qnu)2 = u
d

du

(
1

1− qnu

)
=
∑
m≥1

mqmnum,

and also that
qnu

(1− qnu)2 = q−nu−1

(1− q−nu−1)2 ,

so that
X(u; q) =

∑
n∈Z

∑
m≥1

mqmnum − 2s1

= u

(1− u)2 +
∑
n≥1

∑
m≥1

mqn

1− qn (um + u−m)− 2s1.

We can consider q as an indeterminate, and thus consider the above series to have coefficients
in the field Q((q)). To ease the calculation, we make the change of variables, setting

T = log u = −
∑
n≥1

(1− u)n

n
.

This means
D = u

d

du
= d

dT
.

The idea of such a substitution is to give a suitable Laurent expansion in T that we can
then differentiate normally to substitute into the equation (1) above. We first define a set
of important constants, the Bernoulli numbers.

Definition 4.4. The Bernoulli numbers Bk are defined to be the constants satisfying the
following expression:

T

eT − 1 =
∞∑
k=0

Bk
T k

k! .

14
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We can calculate the Bernoulli numbers for small examples, and find

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B3 = B5 = 0.

Using this, we can expand the first term in the above as

eT

(1− eT )2 = d

dT

(
1

1− eT

)
= d

dT

(
1
T

T

1− eT

)
= − d

dT

 1
T

∑
k≥0

Bk
T k

k!


= 1
T 2 −

∑
k≥0

Bk+2

k!
T k

k + 2 .

Thus we can rewrite X (after expanding the second term) as

X(T ; q) = 1
T 2 −

∑
k≥0

Bk+2

k + 2
T k

k! + 2
∑
n>0
n even

sn+1
Tn

n! . (2)

Applying D to (1), as DX 6= 0, we obtain

D2X − 2X = 6X2 + 2B. (3)

Substituting (2) into (3) and considering the constant term gives

B(q) = −5s3(q).

Now using this and substituting (2) into (1), it follows (again by considering the constant
term) that

C(q) = − 1
12 [5s3(q) + 7s5(q)],

as required.

Corollary 4.5. The coefficients B and C have integral coeffiecients, that is, they lie in
Z[[q]].

Proof. We have n3 ≡ n5(mod 12), so 5s3 +7s5 ≡ 0(mod 12), so the coefficients lie in Z.

Proposition 4.6. (i) The discriminant of Eq satisfies ∆(Eq) ≡ q (mod q2).

(ii) There exists R(q) ∈ Z[[q]] such that j(Eq) = 1
q +R(q).

Proof. Recall Remark 1.8, which said that

∆ = B2 − C − 64B3 + 72BC − 432C2,

j = (1− 48B)3

∆ .

(i) Now s3 ≡ s5 (mod q2), that is,

5s3 + 7s5 ≡ 12s3 (mod 12q2),

proving that
C(q) ≡ −s3 ≡ −q (mod q2).

Also, B(q) ≡ −5q (mod q2), so it follows that

∆ ≡ −C(q) ≡ q (mod q2).

15
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(ii) From (i),
j(Eq) = 1

q
h(q), h(q) = α(q)/β(q)

(where α, β ∈ Z[[q]] with α, β ≡ 1 (mod q)). Therefore we see easily that

h ∈ Z[[q]], h ≡ 1 (mod q)

giving j(Eq) = 1
q +R(q) with R(q) ∈ Z[[q]] as required.

4.3. Calculating the Hasse invariant
Recall: γ(Eq/K) = −c4/c6, well-defined up to squares. Simple calculation gives, for Eq in
the form of 4.1,

c4(q) = 1− 48B(q) = 1 + 240s3(q),

c6(q) = −1 + 72B(q)− 864C(q) = −1 + 504s5(q).

Lemma 4.7. Let α ∈ K∗, with |α| < 1. Then 1+4α is a square in K.

Proof. We consider the binomial coefficients(
−1/2
n

)
= (−1)n

4n

(
2n
n

)
∈ 1

4nZ.

Thus
(1 + 4α)−1/2 =

∑
n≥0

(
−1/2
n

)
(4α)n =

∑
n≥0

(−1)n
(

2n
n

)
αn

is a power series in α with integer coefficients. As |α| < 1, this series converges, so (1+4α)−1

is a square, which implies that 1 + 4α is a square.

Corollary 4.8. We have γ(Eq/K) ≡ 1 (mod K∗).

Proof. As c4 and −c6 are squares in K, we know −c4/c6 is a square in K.

Corollary 4.9. For any choice of q ∈ K with |q| < 1, we have |j(Eq)| > 1 and γ(Eq/K) =
1. In particular, a necessary condition for a p-adic curve to be uniformised in this way is
that it has non-integral j-invariant and trivial Hasse invariant.

Proof. The j-invariant and Hasse invariant of an elliptic curve are preserved by isomor-
phism.

16
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5. Tate’s Uniformisation Theorem
To conclude our work with elliptic curves, we will show that the necessary conditions of
Chapter 4 (i.e. Corollary 4.9) are in fact sufficient. We will also prove that for a p-adic
elliptic curve E with non-integral j-invariant,

γ(E/K) ≡ 1 (mod (K∗)2) if and only if E has split multiplicative reduction,

and thus obtain an alternate necessary and sufficient condition.

First, a lemma on power series.

Lemma 5.1. Let R(X) =
∑
aiX

i be a power series with integral coefficients in K. Then
the function

φ : {q ∈ K : 0 < |q| < 1} −→ {r ∈ K : |r| > 1},

q 7−→ 1
q

+R(q),

is a bijection.

Proof. Firstly it’s clear that φ maps into the correct set, as∣∣∣∣1q +R(q)
∣∣∣∣ =

∣∣∣∣1q
∣∣∣∣ > 1.

It is injective: if φ(q1) = φ(q2), then

|q1 − q2|
|q1q2|

=
∣∣∣∣ 1
q1
− 1
q2

∣∣∣∣ = |R(q1)−R(q2)|

= |a1(q1 − q2) + a2(q2
1 − q2

2) + · · · |

= |q1 − q2| · |a1 + a2(q1 + q2) + · · · |.

But 1/|q1q2| > 1, and |a1 + a2(q1 + q2) + · · · | ≤ 1 (as ai ∈ OK), so we conclude that

|q1 − q2| = 0⇒ q1 = q2.

It is surjective: given r ∈ K with |r| > 1, construct q by setting

q0 = 1
r
, qi+1 = 1

r
(1 + qiR(qi)),

q = lim
i→∞

qi.

A simple check shows that φ(q) = r.

Corollary 5.2. Let E/K be an elliptic curve with |j(E)| > 1. Then there exists some q ∈ K,
with |q| < 1, such that E ∼= Eq over K.

Proof. In 4.6, we proved that

j(Eq) = 1
q

+R(q), R ∈ Z[[q]]

(for some integral power series R). Take this R in the lemma. Pick q such that φ(q) = j(E);
then j(E) = j(Eq), so 1.9 (iii) gives E ∼= Eq over an algebraic closure of K.

17
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Recall the set-up: K is a p-adic field, with ring of integers OK , uniformiser π and residue
field k, and E/K is an elliptic curve. We can consider reduction (mod π) to obtain a curve
Ẽ(k). The curve has good reduction if Ẽ is smooth, or bad reduction otherwise. We say
a curve has split multiplicative reduction if Ẽ has a node and the tangent slopes lie in k
(recall that a curve in Weierstrass form has a node if and only if ∆ = 0 and c4 6= 0). For
more on reduction, see [6], VII.5.

Theorem 5.3 (Tate’s Uniformisation Theorem). Let E/K be an elliptic curve with |j(E)| >
1, and pick q ∈ K such that E ∼= Eq over K. The following are equivalent:

(i) E ∼= Eq over K;

(ii) γ(E/K) ≡ 1 (mod (K∗)2);

(ii) E has split multiplicative reduction.

Proof. (i) ⇐⇒ (ii) follows from Theorem 1.9 (ii) and 4.8.

(i) ⇒ (iii): it suffices to show that Eq has split multiplicative reduction. Now |s3(q)| < 1,
|s5(q)| < 1, so the reduced curve has form

y2 + xy = x3.

The singular point is at (0, 0); we can write the curve as the locus of

f(x, y) = (y + x)y − x3,

i.e. the tangent slopes at the singular point are 0 and 1 ∈ k. As 0 6= 1, the singular point
is a node, so we have split multiplicative reduction.

(iii) ⇒ (ii): take E a curve with split multiplicative reduction, and a minimal Weierstrass
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

such that the singular point is at (0, 0).

We know (0, 0) is on the curve, so a6 ≡ 0 (mod π), and it is singular, so a3 ≡ a4 ≡ 0
(mod π). Thus

b4 = a1a3 + 2a4 ≡ 0 (mod π), b6 = a2
3 + 4a6 ≡ 0 (mod π),

c4 = b22 − 24b4 ≡ b22 (mod π).

Now Ẽ has a node, so c4 6= 0, that is, b2 is a unit in k. Now

γ(E/K) = −c4
c6

= 1
b2

(
1− 24 b4

b2
2

1− 36 b4
b2

2
+ 216 b6

b3
2

)
.

By Lemma 4.7, the numerator and denominator of the bracket are both squares, so this is

≡ 1
b2
≡ b2 (mod (k∗)2).

18
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It remains to prove that b2 = a2
1 + 4a2 is a square in K∗. We’ve shown that the reduced

curve has form
y2 + ã1xy = x3 + ã2x

2,

and we can factorise over the algebraic closure k to get

(y − α̃x)(y − β̃x) = y2 + ã1xy − ã2x
2.

In fact, note that as the reduction is split, α̃ and β̃ lie in k; hence we can use Hensel’s
lemma to lift to α, β ∈ K with α 6= β and

(y − αx)(y − βx) = y2 + a1xy − a2x
2.

Thus
a1 = −(α+ β), a2 = −αβ

⇒ b2 = (α+ β)2 − 4αβ = (α− β)2 ∈ (K∗)2,

i.e. γ(Eq/K) ≡ 1 (mod (K∗)2).

Thus (ii) ⇐⇒ (i) ⇒ (iii) ⇒ (ii), and we are done.

Corollary 5.4. Let E/K be an elliptic curve with |j(E)| > 1, and take q such that E ∼= Eq
over K. Then there is (at worst) a quadratic extension L/K such that E ∼= Eq over L.

Proof. Take L = K(
√
γ(E/K).

Remark: Corollary 5.4 allows us to describe E(K) explicitly as

{u ∈ L∗/qZ : NL/K(u) ∈ qZ/q2Z}.

For details, see [7], V.5.4.

This concludes our work with Tate’s uniformisation theorem.
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PART III: MUMFORD CURVES

6. The Tree of a Compact Subset of P1
K

In the sequel, we will define Schottky groups - certain subgroups of PGL2(K) - and prove
that any such group Γ is free. To do so, we will associate to Γ a tree T (X) (for suitable
compact X ⊂ P1

K) and hence a finite graph T (X)/Γ upon which Γ acts freely.

In this chapter, we will use the notion of reduction to define an equivalence relation on
distinct triples of points in P1

K (or, subsequently, X ⊂ P1
K). We then take for our vertices

the equivalence classes and study the images of reductions to add edges. We will eventually
conclude that the resulting graph is a locally finite tree, and prove a useful result connecting
limit points of X to halflines in T (X).

First, we gather some relevant definitions:

Definition 6.1. A tree T is a connected graph with no cycles. A tree T is said to be locally
finite if for a vertex v there are a finite number of vertices u connected to v by a single
edge.

Definition 6.2. A halfline in a tree is an infinite chain of consecutive edges, with no
repeated vertices, and with a specified endpoint.

6.1. Reductions of P1
K

Let a = (a0, a1, a∞) be a triple of distinct points in P1
K . Then there is a unique automor-

phism γa of P1
K mapping a0 7→ 0, a1 7→ 1, and a∞ 7→ ∞.

Definition 6.3. Define the reduction of P1
K at a by

Ra : P1
K

γa−→ P1
K

R−→ P1
k,

where R is the standard reduction (mod π) for a uniformiser π.

Definition 6.4. Define, for a, b two distinct triples in P1
K ,

Ra,b : P1
K

γa×γb−−−−→ P1
K × P1

K
R×R−−−→ P1

k × P1
k.

Ra, Ra,b are both clearly continuous (where P1
k has the discrete topology).

Proposition 6.5. Let a and b be triples of distinct points in P1
K .

(i) If γaγ−1
b ∈ PGL2(OK), then Ra,b(P1

K) ∼= P1
k.

(ii) If γaγ−1
b /∈ PGL2(OK), then Ra,b(P1

K) ⊆ {α} × P1
k ∪ P1

k × {β}, α, β ∈ P1
k.

Note that equivalently, this says that if the reduction of γaγ−1
b to an endomorphism of P1

k

is invertible, then the image of Ra,b is isomorphic to a single copy of P1
k; otherwise, it is a

subset of two intersecting copies of P1
k.

Proof. (i) We have the commutative diagram

P1
K

γb−−−−→ P1
K

γaγ
−1
b
×id

−−−−−−→ P1
K × P1

KyR yR×R
P1
k

A×id−−−−−−−→ P1
k × P1

k,
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where A denotes the reduction γaγ−1
b . Clearly the composite of the two top maps with the

right hand map is Ra,b. Now γaγ
−1
b ∈ PGL2(OK), so A is invertible, i.e.

Im(Ra,b) = Im(A× id) ∼= P1
k

(since R ◦ γb is surjective).

(ii) Write

γaγ
−1
b =

(
a11 a12
a21 a22

)
.

Then we see that the image of γa × γb lies in the zero set of the polynomial

F = −y0(a21x1 + a22x0) + y1(a11x1 + a12x0),

since
Im(γa × γb) = Im((γaγ−1

b × id) ◦ γb) = Im(γaγ−1
b × id)

(as γb is surjective). Here we have used the notation ([x0 : x1], [y0 : y1]) ∈ P1
K × P1

K .

Now if A is not invertible, then the reduction F (mod π) factorises as

F = (Ax0 +Bx1)(Cy0 +Dy1),

that is, the zero set of F is

Z(F ) = {α} × P1
k ∪ P1

k × {β},

some (α, β) ∈ P1
k × P1

k. The result follows since Im(Ra,b) ⊆ Z(F ).

6.2. The Tree of X ⊂ P1
K

Let X ⊂ P1
K be a compact set.

Definition 6.6. Write X(3) ⊂ X3 for the set of all distinct triples in X. Given a, b ∈ X(3),
we say a and b are equivalent if γaγ−1

b ∈ PGL2(OK).

This clearly defines an equivalence relation on X(3).

Definition 6.7. Suppose a and b are inequivalent points in X(3). We say a and b are
connected if (α, β) /∈ Ra,b(X) (where α, β are as in Proposition 6.5 (ii)). That is, a and b
are connected if and only if Ra,b(X) is the union of two lines and their intersection is not
contained in this image.

Remark: Being connected is clearly a well-defined notion for equivalence classes of points
in X(3); if a ∼ a′, and a connected with b, then as γaγ′−1

a is an automorphism, Ra,b(X)
contains the intersection point if and only if Ra′,b(X) does.

Definition 6.8. The tree of X, denoted T (X), is the graph obtained by taking as vertices
the equivalence classes of points in X(3) and saying [a] and [b] are joined by an edge if and
only if a and b are connected.

Note that Ra(X) is finite, say = {α1, ..., αn}. Then for each a ∈ X(3) we obtain a finite
partition of X into (open, compact) disjoint sets Xi = R−1

a (αi). These partitions entirely
determine T (X), as seen by:

Lemma 6.9. Let a, b ∈ X(3). Then
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(i) a ∼ b if and only if a and b define the same partitions of X.

(ii) a is connected to b if and only if for the corresponding partitions {X1, ..., Xm} and
{Y1, ..., Yn} we can reorder such that

X1 = Y2 ∪ · · · ∪ Yn,

Y1 = X2 ∪ · · · ∪Xm.

Proof. (i) Suppose a ∼ b. We have bijective projection maps

π1 : Ra,b(X) −→ Ra(X),

π2 : Ra,b(X) −→ Rb(X),

where bijectivity follows since if α ∈ Ra(X), pick some β ∈ Rb(X) such that (α, β) ∈
Ra,b(X); then this choice of β is unique since (α, β) lies in the image of the (bijective) map

P1
k
A×id−−−→ P1

k × P1
k

(where A is invertible as a ∼ b). Thus for α ∈ Ra(X), pick β as above, then

R−1
a (α) = R−1

a,bπ
−1
1 (α) = R−1

a,bπ
−1
2 (β) = R−1

b (β).

Thus for each Xi, there exists some Yj such that Xi = Yj . This process is clearly reversible.
Thus the Yj reorder the Xi and the partitions are the same.

Conversely, suppose the partitions are the same. Then for each α ∈ Ra(X), there is a
unique β such that R−1

a (α) = R−1
b (β). Hence it’s clear that Ra,b(X) is not a subset of

{α′} × P1
k ∪ P1

k × {β′} for some α′, β′ ∈ P1
k, that is, a ∼ b.

(ii) Suppose a and b are connected. Put

X1 = R−1
a (α), Y1 = R−1

b (β),

where (α, β) is the intersection point (which does not lie in Ra,b(X), since a and b are
connected). Then X1 ∪ Y1 = X, and X1 ∩ Y1 = ∅ since (α, β) /∈ Ra,b(X), hence it follows
that the decomposition has the required form.

Conversely if we have a decomposition of this form, put α = Ra(X1), β = Rb(Y1). It’s
clear that Ra,b(X) ⊆ {α} × P1

k ∪ P1
k × {β} with (α, β) /∈ Ra,b(X).

We now quote a lemma that completely describes the edges through a point [a] ∈ T (X).

Lemma 6.10. Let [a] ∈ T (X), with Ra(X) = {α1, ..., αn}. Then if |R−1
a (αi)| > 1, there

exists a unique [bi] ∈ T (X) such that there is a single edge between [a] and [bi]. Furthermore,
all the edges through [a] are obtained in this way.
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Lemmas 6.9 and 6.10 allow us to examine chains in T (X) by looking at the partitions they
give rise to. In particular, Lemma 6.9 (ii) means that if [a] is connected to [b], we can (for
a certain example) write the partitions like

where here the lines represent inclusions (i.e. X1 = Y1 ∪ · · · ∪Yn−1). Then for [b] connected
to [c], Lemma 6.10 implies that we can do the same, with a necessarily different choice of
Yi (i.e. if Yn = X2 ∪ · · · ∪Xm, we can’t write Yn = Z2 ∪ · · · ∪ Zp), as shown below:

We see that we obtain a sequence of strictly decreasing nested subsets

X1 ) Y1 ) Z1 ) · · · .

Corollary 6.11. There are no cycles (non-trivial finite chains with the same start and end
point) in T (X).

Proof. Take a cycle, and break it up as [a]− [b]− [c]− · · · − [a]. We obtain

X1 ) Y1 ) Z1 ) · · · ) X ′1,

but then X ′1 ∈ {X2, ...Xm}. This is a contradiction as the Xi are disjoint.
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Proposition 6.12. There is a bijection

{halflines that start at [a]} ←→ {limit points of X}.

Proof. Take a halfline [a1]− [a2]− · · · . We obtain a sequence

X1
1 ) X2

1 ) X3
1 ) · · ·

of compact subsets of X. We have
∞⋂
i=1

Xi
1 6= ∅,

since the Xi
1 are closed. Without loss of generality, take 0 ∈ Xi

1 for all i. Also without
loss of generality ∞ /∈ X1

1 . Thus for each i, we can take a well-defined real number

δi = sup{|x| : x ∈ Xi
1}.

As the Rai are continuous, the Xi
1 are open and contain a neighbourhood of 0; disjointness

of each partition means
Xi

1 = {x ∈ X1
1 : |x| ≤ δi},

and limi→∞ δi = 0, since the valuation on K is discrete and the inclusions Xi
1 ) Xi+1

1 are
strict. Thus

∞⋂
i=1

Xi
1 = {0},

and this is a limit point (as the intersection of an infinite family of open sets).

Conversely, if we take a limit point α ∈ X, and [a] ∈ T (X), then we can define a halfline
by:

(i) [a1] = [a],

(ii) [an+1] is the point connected to [an] corresponding to Ran(α).

Here we note that |R−1
an (Ran(α))| > 1 since α is a limit point and by continuity of Ran .

We collect our results in the following:

Theorem 6.13. T (X) is a locally finite tree.

Proof. All that remains is to show T (X) connected. Take [a] 6= [b] in T (X). If they are
not connected, then there is some α ∈ X with Ra,b(α) lying on the intersection of the two
lines in Ra,b(X). Then R−1

a (Ra(α)) clearly contains more than one point (since it contains
all points corresponding to the second line in the image). So define [a1] to be the point
connected to [a] over Ra(α). Then we continue inductively to define a chain

[a]− [a1]− [a2]− · · ·

in the direction of [b]. Such a chain must be finite by our results on halflines, so it defines
a path from [a] to [b].

24



P -adic Uniformisation of Curves Chris Williams

7. Schottky Groups
We now consider Schottky groups, finitely generated discontinuous subgroups of PGL2(K)
with no elements of finite order. Such groups give an analogue of the group qZ studied in
the genus 1 case. In this section, we review some properties of general discontinuous groups,
and then specialise to prove a structure theorem for Schottky groups, namely that every
Schottky group is free. We will conclude by quoting a result that every Schottky group has
a good fundamental domain, that is, a subset of P1

K with suitable properties. Such domains
will be used to define a space Ω with Ω/Γ an algebraic curve.

7.1. Discontinuous Groups
Recall that PGL2(K) = GL2(K)/K∗ is the automorphism group of P1

K . If γ ∈ P1
K ,

γ =
(
a b
c d

)
,

then γ acts on q ∈ P1
K by γ(q) = aq+b

cq+d .

Definition 7.1. Let Γ ≤ PGL2(K) be a subgroup. We say that α ∈ P1
K is a limit point of

Γ if there is an infinite sequence (γn)∞n=1 ⊂ Γ, with γm 6= γn for m 6= n, and some β ∈ P1
K

such that
lim
n→∞

γn(β) = α.

We write L = L(Γ) for the set of limit points of Γ.

Definition 7.2. Let F be a field. We say that a subgroup Γ ≤ PGL2(F ) is discontinuous
if

(i) L(Γ) 6= P1
F ,

(ii) for any α ∈ P1
F , the closure Γ(α) of the orbit of α is compact.

Remarks: (i) Note that if F is locally compact, the second condition is automatic. So
when F = K is a p-adic field, Γ is discontinuous if and only if L(Γ) 6= P1

K . From now
on, we assume that we are in this situation.

(ii) If a group Γ is discontinuous, then it is discrete. Indeed, suppose there is some
sequence (γn)∞n=1 ⊂ Γ tending to some γ ∈ Γ as n tends to infinity. Then the
sequence (γ−1γn)∞n=1 tends to the identity, and hence every point of P1

K is a limit
point, contradicting the assumption that Γ is discontinuous.

Definition 7.3. Let γ ∈ PGL2(K), with eigenvalues λ, µ. We say that γ is

(i) hyperbolic if |λ| 6= |µ|,

(ii) parabolic if λ = µ, or

(iii) elliptic if |λ| = |µ| but λ 6= µ.

Lemma 7.4. Let γ ∈ PGL2(K).

(i) γ is hyperbolic if and only if γ is conjugate in PGL2(K) to an element of the form(
q 0
0 1

)
, 0 < |q| < 1.
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(ii) γ is elliptic or parabolic if and only if a conjugate of γ2 lies in PGL2(OK).

Proof. Omitted. See [1], I.1.4 for details.

Proposition 7.5. (i) Suppose γ ∈ PGL2(K) is hyperbolic. Then 〈γ〉 is discontinuous.

(ii) If Γ is a discontinuous group, and γ ∈ Γ is elliptic or parabolic, then γ has finite
order.

Proof. (i) The group 〈γ〉 has two limit points, corresponding to the eigenvectors of γ. So
L(〈γ〉) 6= P1

K , and hence 〈γ〉 is discontinuous.

(ii) As γ is elliptic or parabolic, it is conjugate in PGL2(K) to an element of form

(a)
(
λ 0
0 1

)
, |λ| = 1, or (b)

(
1 µ
0 1

)
,

where here we write elements of GL2(K) representing the corresponding classes in PGL2(K).
Let Γ′ = 〈γ〉; then Γ′ is discontinuous, and hence discrete. In case (a), the group {λn : n ∈
Z} is this a discrete subgroup of the unit group O×K of OK , and thus is finite, forcing λ to
be a root of unity, proving the claim.

In case (b), we have
〈γ〉 ∼= {nµ : n ∈ Z},

and for a p-adic field this cannot be discrete unless µ = 0.

We want to investigate the limit points of discontinuous groups. Suppose Γ is discontinuous,
with (without loss of generality) ∞ /∈ L, and (γn)∞n=1 ⊂ Γ is an infinite sequence. Write

γn =
(
an bn
cn dn

)
.

Then, by compactness of P1
K , there is a subsequence such that an/cn = γn(∞) tends to

some limit, then a subsequence of this such that bn/dn = γn(0) tends to some limit, and yet
a further subsequence such that dn/cn = −γ−1

n (∞) tends to a limit. From now on, when
we refer to (γn) we implicitly mean this subsequence.

Since ∞ /∈ L, we have

lim
n→∞

(
an
cn

bn
cn

1 dn
cn

)
=
(
a b
1 d

)
∈M2(K),

where the matrices on the left hand side define the same elements (under equivalence in
GL2(K)) as the γn in PGL2(K).

Now, since Γ is discontinuous, it is discrete; thus the limit does not lie in GL2(K), that is
it has determinant ad− b = 0, forcing ad = b. Thus

lim
n→∞

γn(q) = aq + b

q + d
= a(q + d)

q + d
= a,

unless q = −d ∈ L and dn/cn is a constant sequence.

Definition 7.6. Let α ∈ P1
K . Then define L(α) ⊆ L to be the set of limit points β of Γ for

which there is an infinite sequence (γn) such that

lim
n→∞

γn(α) = β.
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Lemma 7.7. (i) If x /∈ L, then L(x) = L.

(ii) For any three distinct points A = {x, y, z} ⊂ P1
K , there is some w ∈ A with L(w) = L.

Proof. (i) In our discussion above, we showed that limn→∞ γn(x) is independent of x when
x 6= −d ..= limn→∞−γ−1

n (∞). But −d is a limit point. So as x is not a limit point, we have
L = L(x).

(ii) From (i), we need only consider the case where x, y, z ∈ L. If x and y are distinct,
then L(x) ∪ L(y) = L, since if β is a limit point with corresponding sequence γn, either x
or y is not equal to − limn→∞ γ−1

n (∞), so β = limn→∞ γn(x) (without loss of generality).

Thus z ∈ L(x) ∪ L(y). Without loss of generality z ∈ L(x). Continuity gives L(z) ⊆ L(x);
indeed, if z = limn→∞ γn(z) for some sequence (γn), and w = limm→∞ φm(z) ∈ L(w) for
some sequence (φm), we have w = limm,n→∞ φmγn(x) ∈ L(x). Thus

L = [L(z) ∪ L(x)] ⊆ L(x) ⊆ L,

that is, L(x) = L, as required.

Corollary 7.8. L is compact. If |L| > 2, then L is perfect (equal to its set of limit points).

Proof. If |L| ≤ 2, it is clearly compact. Suppose |L| > 2. Pick a limit point x ∈ L such that
L = L(x) using Lemma 7.7 (ii). Note that as x = limn→∞ γn(x) is a limit point for Γ, we
have Γ(x) ⊂ L; indeed, for any φ ∈ Γ, we see that φ(x) = limn→∞ φγn(x). It is thus easy
to see that L is nothing but the closure Γ(x). Then

Γ(x) = L(x) = L,

that is, L is compact and perfect.

7.2. Schottky Groups
Definition 7.9. A subgroup Γ ≤ PGL2(K) is said to be a Schottky group if

(i) it is finitely generated,

(ii) it is discontinuous, and

(iii) every non-trivial element is hyperbolic (which happens if and only if it has no non-
trivial elements of finite order).

Proposition 7.10. Let Γ be a Schottky group with at most 2 limit points. Then Γ = 〈γ〉
for some γ ∈ Γ.

Proof. Note that there must be exactly 2 limit points (see Lemma 7.5 (i)). Without loss
of generality L = {0,∞}. Then every element has form x 7→ qx, q ∈ K∗. The subgroup
{q : (x 7→ qx) ∈ Γ)} is a discrete subgroup of K∗ with no elements of finite order, hence is
generated by some q0. This corresponds to some hyperbolic γ with Γ = 〈γ〉.

Remarks: (i) It follows that any Schottky group with 2 limit points is free. Henceforth
we focus on the case where there are more than 2 limit points.

(ii) Let X be a compact subset of P1
K with Γ(X) = X. Then note that L(Γ) ⊂ X, since

L is perfect, and for any distinct triple of points in X, we can take one of them, say
x, such that L = L(x). For any such X we have a tree T (X).
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Proposition 7.11. Take X as above. Then Γ acts on T (X) by

γ · [(a0, a1, a∞)] = [γ(a0), γ(a1), γ(a∞)].

Proof. It suffices to show that the natural action of Γ on X(3) respects equivalence and
connectedness of points. Note that if a = (a0, a1, a∞) ∈ X(3), and φ ∈ Γ, then

γa · φ−1 : φ(a) 7→ (0, 1,∞),

that is, γaφ−1 = γφ(a). Thus

γφ(a)γ
−1
φ(b) = γa · φ−1 · φ · γ−1

b = γaγ
−1
b ,

i.e. the action of Γ on X(3) preserves equivalence and connectedness.

We’re now in a position to prove the main result of this section, namely that any Schottky
group Γ is free. To do so, we note that Γ acts freely on T (X)/Γ; so the result follows
immediately from:

Lemma 7.12. Let Γ be a Schottky group, and let T (X) be the tree of a compact Γ-invariant
X ⊂ P1

K . Then T (X)/Γ is finite.

Proof. First, some notation. If T is a locally finite tree, and α is a vertex of T , then

T \{α} = S1 t · · · t Sm t T1 t · · · t Tn,

a union of disjoint locally finite trees, where each Si is finite and each Tj is infinite. We say
that fin(α) ..= S1 ∪ · · · ∪ Sm is the finite side of α, and that α is n-sided (where n is the
number of infinite components of this disjoint union).

Take any vertex α of T (X), and take Γ′ ⊂ Γ a finite generating set (containing inverses
and the identity). We pick a finite subtree U ⊂ T (X) to be the minimal tree such that:

(i) For all γ ∈ Γ′, we have γ(α) ∈ U , and

(ii) If β ∈ U , then fin(β) ⊂ U .

Then define a subtree V of T (X) by

V =
⋃
γ∈Γ

γ(U).

Note that since U contains the finite side of any β ∈ U , the same must be true of any
β′ ∈ V; indeed, if β′ = γ(β), some γ, then fin(β′) = γ(fin(β)).

Claim: T (X) = V.

Proof of Claim: Take β ∈ T (X). Then if β is 1-sided, then it is contained
in the finite side of some n-sided vertex for some n ≥ 2. So without loss of gen-
erality β is n-sided with n ≥ 2. Thus there is a halfline starting at α through β;
such a halfline corresponds to a limit point z of Γ. Take any z0 ∈ P1

K\L, and a
sequence γm such that γm(z0)→ z (which is possible by Lemma 7.7 (ii)). Then
α, γ1(α), γ2(α), ... are all points on the halfline corresponding to z, and lie in V.
So as β lies in a path from γk(α) to γk+1(α), some k, we have β ∈ V.

Thus T /Γ is finite, as U is, and every point of T (X) is equivalent under the action of Γ to
one in U .
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Theorem 7.13 (Ihara). Let Γ be a Schottky group. Then Γ is free.

Proof. T (X) is simply connected, and the projection

T (X)→ T (X)/Γ

is clearly surjective. Hence T (X) is the universal cover for T (X)/Γ, with group of covering
translations Γ. Thus Γ is isomorphic to the fundamental group of the finite graph T (X)/Γ.
But the Van Kampen Theorem says that this is free on its generators.

7.3. The Fundamental Domain of a Schottky Group
We now focus our attention on constructing a space Ω on which Γ acts discontinuously,
and a workable notion of Ω/Γ. We do so by cutting discs out of P1

Cp and identifying the
resulting boundaries in a suitable way.

Recall that Cp is defined to be the completion of the algebraic closure of K. For ease
of notation, we write P ..= P1

Cp . We fix some notation:

• Let Br(α) = {x : |x− α| ≤ r}, a closed ball, and

• Let Br(α) = {x : |x− α| < r}, the corresponding open ball.

Note that PGL2(K) takes open (resp. closed) balls to open (resp. closed) balls.

Consider the following construction: Let B1, ..., Bg, C1, ..., Cg be 2g disjoint closed balls in P,
with centres in K, and with corresponding open balls B1, ...Bg, C1, ..., Cg.
Suppose there exist γ1, ..., γg ∈ PGL2(K) with

γi(P\Bi) = Ci, γi(P\Bi) = Ci. (1)

Figure 7.1

Let Γ = 〈γ1, ..., γg〉 be the group generated by the γi.

Definition 7.14. Let F = P\(
g⋃
i=1

Bi ∪
g⋃
i=1

Ci).

Lemma 7.15. The group Γ is a non-abelian free group on the γi.

Proof. We consider, for ψ ∈ Γ, the image ψ(F ). We can write any such ψ in reduced form
as

ψ = φkφk−1 · · ·φ1,

where φi ∈ {γ1, ..., γg, γ
−1
1 , ..., γ−1

g } and there are no γi, γ−1
i adjacent to each other.
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Claim: We have ψ(F ) ⊂
{
Ci : φk = γi
Bi : φk = γ−1

i

Proof of Claim: We proceed by induction on k. The case k = 1 follows
from equation (1). Without loss of generality, suppose φk = γi. Then if
ψ′ = φk−1 · · ·φ1, by the induction step we have ψ′(F ) ⊂ Bj ∪ Cj ⊂ P\(Bi)
for some j 6= i. But Bj ∪ Cj ⊂ P\Bi; thus

ψ(F ) = γiψ
′(F ) ⊂ γi(Bj ∪ Cj) ⊂ γi(P\Bi) ⊂ Ci.

The case φk = γ−1
i follows identically since γ−1

i (P\Ci) = Bi.

Thus if φk · · ·φ1 and δj · · · δ1 are two reduced forms for ψ ∈ Γ, we must have φk = δj as
they both map F into the same closed ball. Continuing, we find φk−1 = δj−1, etc. until
j = k and the forms are the same. The lemma follows.

Definition 7.16. For ψ = φk · · ·φ1 in reduced form, we say `(ψ) = k is the length of ψ.
We set `(id) = 0 by convention.

Definition 7.17. Define Ωn =
⋃

`(ψ)≤n
ψ(F ), and then set Ω =

⋃
n≥0

Ωn.

Note that for ψ ∈ Γ, the intersection F ∩ ψ(F ) = ∅ unless ψ ∈ {id, γ1, ...γg, γ
−1
1 , ..., γ−1

g }.
This relation means that for ψ and ψ′ in Γ, after translates, ψ(F )∩ψ′(F ) = ∅ unless `(ψ)
and `(ψ′) differ by at most 1. We see the following:

Figure 7.2

Define, for ψ = φk · · ·φ1 ∈ Γ,

Bψ =
{
ψ(P\Bi) : φ1 = γi
ψ(P\Ci) : φ1 = γ−1

i

.

Then the above discussion gives:

Proposition 7.18. We have

P\Ωn−1 =
⋃

`(ψ)=n

Bψ, n ≥ 1.

Lemma 7.19. We have Bψ ⊂ Bψ′ if and only if ψ = ψ′δ, where `(ψ) = `(ψ′) + `(δ).

Proof. For the converse direction, we see Bψ = ψ′(δ(P\Bi)) for some i, and Bψ′ = ψ′(P\Bj)
for some j. But by inspection, as ψ = ψ′δ,

δ(P\Bi) ⊂ P\Bj ,
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hence the result.

For the forwards direction, if Bψ ⊂ Bψ′ , then they both lie in the same Bi or Ci. Write

ψ = φk · · ·φ1, ψ′ = φ′j · · ·φ′1.

Then φk = φ′j . Continuing in the same way, we obtain the result.

Theorem 7.20. The set L(Γ) of limit points of Γ is equal to P\Ω.

Proof. First we note that L = L(Γ) ⊂ P\Ω. Indeed, if α ∈ L ∩ Ω, then we can (after a
translation by a suitable element of Γ) assume without loss of generality that α ∈ L ∩ F.
Now F contains at least three distinct points of P1

K , hence by Lemma 7.7 (ii), there exists
x ∈ F with L = L(x). Then take an infinite sequence

(φn) ⊂ Γ, φn(x)→ α.

But we noted above that there are only finitely many elements ψ ∈ Γ with

ψ(F ) ∩ F 6= φ.

It follows that there are only finitely many elements ψ ∈ Γ with

ψ(F ) ∩ Ω1 6= φ.

Thus φn(x) /∈ Ω1 for all but finitely many n, that is, α /∈ F, which is contradiction. (Here
we pass to Ω1 as F is closed, but there is an open set strictly between F and Ω1.)

To show the converse, we use Proposition 7.18. Write rψ for the radius of Bψ. We want to
show that

lim
`(ψ)→∞

rψ = 0

uniformly. If this holds, then every point of P\Ω lies in an infinite sequence of nested open
balls of radius tending to 0, i.e. it is a limit point.

Note that if Bψ ( Bψ′ , we can write

ψ = φk · · ·φ1δ, ψ′ = φk · · ·φ1, with `(δ) ≥ 1.

Thus
Bψ = φk · · ·φ2(Bφ1δ), Bψ′ = φk · · ·φ2(Bφ1).

It follows that rψ/rψ′ = rφ1δ/rφ1 < 1. Let

ρ = max
φ,δ

rφδ
rφ
,

where φ ∈ {γ1, ..., γg, γ
−1
1 , ..., γ−1

g } and id 6= δ ∈ Γ. Note that at this maximum, `(δ) = 1,
so ρ < 1 (as there are only finitely many δ with `(δ) = 1). Induction then gives

rψ ≤ ρ`(ψ)R,

for some constant R; that is, rψ → 0 uniformly as `(ψ) → ∞. Thus P\Ω ⊂ L and we are
done.

Corollary 7.21. The group Γ = 〈γ1, ..., γg〉 is a Schottky group.
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Proof. Γ is obviously finitely generated. It is free on the generators, so it has no elements
of finite order. It is discontinuous by Theorem 7.20 since the set of limit points is P\Ω, and
Ω 6= P.

We state the following important theorem. For a proof, see [1], I.4.3.

Theorem 7.22. Every Schottky group occurs in this way. That is, if Γ is a Schottky group,
there exist open balls B1, ..., Bg, C1, ..., Cg and a set of generators γ1, ..., γg for Γ such that

γi(P\Bi) = Ci, γi(P\Bi) = Ci.

Definition 7.23. Let Γ be a Schottky group, and take Bi, Ci as above. The set

F = P\

(
g⋃
i=1

Bi ∪
g⋃
i=1

Ci

)

is called a good fundamental domain for Γ.
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8. Automorphic Forms
We’ve constructed, for a Schottky group Γ, a space Ω on which Γ acts discontinuously. We
want to look at the quotient space Ω/Γ. To do so, we look at automorphic forms on Ω, re-
turning to p-adic analysis. For points a, b ∈ Ω, we construct an automorphic form θ(a, b; z)
using Γ, and then prove that any automorphic form with constant factors of automorphy
is a finite product of these functions up to a constant factor.

The ultimate goal is, as in part II, to show that the field of Γ−invariant automorphic
forms is a function field of one variable, obtaining the result that Ω/Γ is an algebraic curve.
This will be covered in chapter 9.

Before we begin, we prove a simple lemma that will be used constantly throughout this
section:

Lemma 8.1. Let D = Br(x) ⊂ Cp be an open disc, a, b ∈ D. For all z ∈ Cp\D, we have

|z − a|
|z − b|

= 1.

Proof. We have |a − b| < r and |z − a| ≥ r as by the non-archimedean property, a and b
are both centres of D. Hence

|z − a|
|z − b|

= |z − a|
|(z − a) + (a− b)| = |z − a|

|z − a|
= 1.

8.1. A Return to p-adic Analysis
Definition 8.2. An affinoid disc is a closed disc in Cp containing ∞, i.e. of form Cp\D,
where D ⊂ Cp is an open disc. An affinoid domain is a finite intersection of affinoid discs.

Remark: The domain F as constructed in chapter 7 is an affinoid domain, as is Ωn for all
n. Recall that we definedΩ =

⋃
n≥0

Ωn.

Definition 8.3. (i) A function on an affinoid domain X is said to be holomorphic if it
is the uniform limit of rational functions with no pole in X.

(ii) A function on Ω is holomorphic if its restriction to Ωn is holomorphic for each n.

(iii) A function on Ω is meromorphic if it is the quotient of two holomorphic functions
g/h, with h 6= 0.

Definition 8.4. Define the norm of absolute convergence ||f ||Ωn ..= supz∈Ωn |f(z)|.

We quote some important results for holomorphic functions, similar to the complex case:

Proposition 8.5. Let f be a non-zero holomorphic function on Ω. Then f has a finite
number of zeros in F .

Proposition 8.6. If f is a holomorphic function that is bounded on Ω, then it is constant.

Definition 8.7. A meromorphic function f on Ω is said to be an automorphic form with
constant factors of automorphy if

f(z) = ζ(φ)f(φ(z)), ζ(φ) ∈ C∗p,∀φ ∈ Γ.
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We’re now in a position to associate a class of automorphic functions to a Schottky group
Γ. This study is based on the following observation:

Proposition 8.8. Let a, b ∈ Ω. Pick ε > 0. Then for all but finitely many γ ∈ Γ,

|γ(a)− γ(b)| < ε.

Proof. In Proposition 7.18, and the proof of Theorem 7.20, we showed that P\Ωn is the
disjoint union of a finite number of open balls, whose radius tends to 0 uniformly as n→∞.
So take N ∈ N such that, for all n ≥ N, P\Ωn is a disjoint union of open balls of radius
strictly less than ε.

In the discussion before Proposition 7.18, we showed that F ∩ γ(F ) = φ unless `(γ) = 1. A
similar argument shows that Ωn ∩ γ(Ωn) = ∅ if `(γ) > 2n. So for `(γ) > N , as γ(Ω) must
lie in a single one of these disjoint balls, γ(a) and γ(b) both lie in the same open ball in
P\Ωn of radius less than ε. The non-archimedean property means we can take the centre of
this ball to be at γ(a); hence the result.

Define, as rational functions,

z − a
z −∞

= z − a, z −∞
z − b

= 1
z − b

,
z −∞
z −∞

= 1.

Lemma 8.9. Let (ai), (bi) be sequences in Ω with

(i) |ai − bi| −→ 0 as i→∞;

(ii) for any n, only finitely many ai, bi ∈ Ωn.

Then

f(z) =
∞∏
i=1

z − ai
z − bi

is a meromorphic function on Ω with zeros only at {ai} and poles only at {bi}.

Proof. We must show that f is meromorphic on Ωn for all n. Fix n, and pick N such that
ai, bi /∈ Ωn for all i ≥ N (possible by (ii)). Set ε to be the minimum radius of the open
balls that make up P\Ωn. Define partial products

fk =
k∏

i=N

z − ai
z − bi

;

fk is clearly a rational function. Furthermore,

|fk+1(z)− fk(z)| =
∣∣∣∣z − ak+1

z − bk+1
− 1
∣∣∣∣ |fk(z)| =

∣∣∣∣bk+1 − ak+1

z − bk+1

∣∣∣∣ |fk(z)|.

If z ∈ Ωn, then z does not lie in the open ball Bε(bk+1), i.e. |z − bk+1| ≥ ε. So this is less
than or equal to 1

ε |bk+1 − ak+1| · ||fk||Ωn .

Claim: ||fk||Ωn is bounded as k →∞.

Proof of Claim: It suffices to show that |(z − ai)/(z − bi)| = 1 for sufficiently
large i. Then take M such that |ai − bi| < ε for all i ≥M, so that ai and bi lie
in the same open ball. The result follows from Lemma 8.1.
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So ||fk+1 − fk||Ωn ≤ C|bk+1 − ak+1| for some constant C. Thus

fi = fN +
i−1∑
k=N

(fk+1 − fk)

is a convergent series, i.e. fi tends to a holomorphic function g on Ωn as i tends to ∞.
Then

f =
N−1∏
i=1

z − ai
z − bi

· g

is meromorphic on Ωn, as required. Note convergence is independent of n.

It remains to show that the zeros/poles occur only at ai or bi. If there was a pole c ∈ Ω,
then c ∈ Ωn for some n. But f |Ωn clearly cannot have a pole at c since the poles occur at
b1, ..., bN−1, with N chosen as above. So f has poles only at the {bi}; then considering 1/f ,
we can show that there are no zeros outside the {ai}.

Theorem 8.10. Let a, b ∈ Ω. Then

θ(a, b; z) ..=
∏
γ∈Γ

z − γ(a)
z − γ(b)

is an automorphic form with constant factors of automorphy.

Proof. Proposition 8.8 shows that θ is meromorphic on Ω, since condition (i) is satis-
fied by Lemma 8.9, and (ii) by the definition of Γn. It remains to show that θ(a, b; z) =
ζ(φ)θ(a, b;φ(z)), for some constant ζ(φ). Fix φ ∈ Γ.

Note that
φ(z)− γ(a)
φ(z)− γ(b) = c(γ)z − φ

−1(γ(a))
z − φ−1(γ(b))

for some constant c(γ), since each side is a rational function with the same zeros and poles
(i.e. they differ only by a constant). If φ(∞) 6= γ(a), γ(b), then evaluating at ∞ gives

c(γ) = φ(∞)− γ(a)
φ(∞)− γ(b) ∈ C∗p.

Now note that there are at most two elements γ ∈ Γ with φ(∞) = γ(a) or γ(b). Indeed, if
there were more, then without loss of generality γ(a) = γ′(a) = φ(∞), which implies that
(γ′)−1γ fixes a. But only the identity has fixed points in Ω. Write

Γ̃ = {γ ∈ Γ : φ(∞) = γ(a) or γ(b)}, |Γ̃| ≤ 2.

So
θ(a, b;φ(z)) =

∏
γ̃∈Γ̃

φ(z)− γ̃(a)
φ(z)− γ̃(b)

∏
γ∈Γ\Γ̃

φ(z)− γ(a)
φ(z)− γ(b)

=

∏
γ̃∈Γ̃

c(γ̃)
∏

γ∈Γ\Γ̃

φ(∞)− γ(a)
φ(∞)− γ(b)

∏
γ∈Γ

z − φ−1(γ(a))
z − φ−1(γ(b))

= ζ(φ)−1θ(a, b; z), ζ(φ) ∈ C∗p,
where we note that the infinite product gives a well-defined element of C∗p since it is the
evaluation of the function

θ(a, b;φ(z))
∏
γ̃∈Γ̃

φ(z)− γ̃(a)
φ(z)− γ̃(b)

at ∞ (and this function is clearly holomorphic and non-zero at ∞).
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Before moving onto a structure theorem for automorphic forms, we give some basic prop-
erties of θ.

Proposition 8.11. (i) For φ ∈ Γ, θ(a, φ(a); z) has no zeros or poles.

(ii) For any a, b ∈ Ω, we have θ(a, φ(a); z) = θ(b, φ(b); z).

Proof. (i) It suffices to show that a is not a zero or a pole; then the result follows by the
automorphy property. But

θ(a, φ(a); z) = z − a
z − φ(a) ·

z − φ−1(a)
z − φ−1φ(a)

∏
γ 6=id,φ−1

z − γ(a)
z − γ(φ(a))

= z − φ−1(a)
z − φ(a)

∏
γ 6=id,φ−1

z − γ(a)
z − γ(φ(a)) .

Thus there is no zero or pole at a. For (ii),

θ(a, φ(a); z)
θ(b, φ(b); z) =

∏
γ∈Γ

z − γ(a)
z − γ(φ(a))

z − γ(φ(b))
z − γ(b)

=
∏
γ∈Γ

z − γ(a)
z − γ(b)

∏
γ′∈Γ

z − γ′(b)
z − γ′(a) = θ(a, b; z)

θ(a, b; z) = 1.

Definition 8.12. Define uφ(z) ..= θ(a, φ(a); z) for some choice of a ∈ Ω. We also write
ui(z) ..= uγi(z).

Proposition 8.13. We have ζ(φ) = ζ(a, b;φ) = uφ(a)/uφ(b).

Proof. Rearranging the identity ζ(a, b;φ) = θ(a, b; z)/θ(a, b;φ(z)) gives the result.

8.2. A Structure Theorem for Automorphic Forms
We will prove in this section that any automorphic form with constant factors of automor-
phy is in fact a finite product of θ(a, b; z) for suitable a, b. First, we enlarge F .

If Γ is a Schottky group with good fundamental domain F and associated generators
γ1, ..., γg, then each γi has two fixed points. One of these lies in Bi, the other in Ci;
call them bi, ci. Then as | · | is non-archimedean, we can take these as centres, i.e. for
suitable ri, si we have

Bi = Bri(bi), Ci = Bsi(ci).

Put w(z) = (z − bi)/(z − ci); then, for φ ∈ Γ,

w(γi(z)) = qiw(z),

since w(γi(z)) and w(z) have the same zeros and poles. Write ∂Bi = Bi\Bi, and similarly
for ∂Ci. Then γi maps ∂Bi to ∂Ci. So if x ∈ ∂Bi, taking valuations,

|w(γi(z))| =
|γi(x)− bi|
|γi(x)− ci|

= |ci − bi|
si

= |qi||w(x)| = |qi|
|x− bi|
|x− ci|

= |qi| · ri
|ci − bi|

.

Thus |qi| = |bi − ci|2/risi > 1.
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Lemma 8.14. There exists δ, satisfying 1 < δ < |bi − ci|/ri, such that the 2g annuli

Ri = {z : ri
δ
≤ |z − bi| ≤ riδ}, Si = {z : si

δ
≤ |z − ci| ≤ siδ}

are disjoint for i = 1, ..., g, and γi(Ri) = Si.

Proof. It’s clear that we can take the Ri, Si disjoint with a small enough δ. Take 1 < δ <
|bi−ci|
ri

, and then x such that |x− bi| = riδ. Now

|w(γi(x))| = |γi(x)− bi|
|γi(x)− ci|

= |qi|
|x− bi|
|x− ci|

,

so (|ci − bi|)/(|γi(x)− ci|) = riδ|qi|/(|bi − ci|), i.e. |γi(x)− ci| = si/δ. The result follows as
the circles are mapped to the right place inside the annulus.

This construction leads to the concept of the order of a holomorphic function at Bi. Let f
be holomorphic on Ω, with no zero on Ri. We can write f as a convergent Laurent series

f(z) =
∑
n∈Z

an(z − bi)n.

As there are no zeros in Ri, by Remark 3.3, there exists an n such that on Ri,

|f(z)| = |an||z − bi|n.

Write n = ordBif. We also, for convenience, use the notation Bi+g = Ci in the next two
results to simplify cases.

Lemma 8.15. Let F̃ = F ∪
g⋃
i=1

Ri ∪
g⋃
i=1

Si, and let f be holomorphic on F̃ with no zeros in
g⋃
i=1

Ri ∪
g⋃
i=1

Si. Then (the number of zeros of f) = −
2g∑
i=1

ordBif.

Proof. Note any rational function on P can be written as a finite product
∏ z−ai

z−bi , where
the number of zeros and poles are the same, as z − a = (z − a)/(z −∞) and 1/(z − b) =
(z −∞)/(z − b). We prove the result for f = (z − a)/(z − b). Note b /∈ F̃ , so without loss
of generality b ∈ B1, and a ∈ P. There are three cases:

(i) a ∈ B1. Then ordBi = 0 for all i, since a, b are in the same open ball (Lemma 8.1).

(ii) a ∈ Bj , j 6= 1. Then ordB1f = −1, and ordBjf = 1, with ordBif = 0, i 6= 1, j (using
a simple variant of Lemma 8.1).

(iii) a ∈ F. Then ordB1f = −1, and ordBjf = 0 for j > 1.

Thus the result is true for functions of this form. Now note that ordBifg = ordBif+
ordBig, from which the result follows for rational functions.

The general case follows: if f is holomorphic, write f = gh, where g is holomorphic with
no zeros and h rational (which is possible since there are a finite number of zeros in F̃ ). It
suffices to prove that ordBig = 0 for all i. But g is bounded below (as F̃ is compact) by ε,
say. As g is holomorphic, it is a uniform limit of rational functions with no pole in F̃ , so
take some g̃ rational with ||g − g̃||F̃ < ε. Then

|g̃(z)| = |(g̃(z)− g(z)) + g(z)| = |g(z)|.

But g̃(z) has no zeros, so the result follows from our work above.
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Corollary 8.16. Let f be holomorphic on F̃ , with ordBif = 0 for all i. Then |f | is constant.

Proof. As above, since by assumption f has no zeros in F̃ , we can approximate f by a
rational function f̃ , with |f(z)| = |f̃ |. Write

f̃(z) = (z − a1) · · · (z − ak)
(z − b1) · · · (z − bk) ,

with k minimal. Then if, without loss of generality, a1, b1 ∈ B1, then

|f̃(z)| = C

∣∣∣∣ (z − a2) · · · (z − ak)
(z − b2) · · · (z − bk)

∣∣∣∣
with C some constant by Lemma 8.1. Thus we could have taken k− 1. Thus no ai, bi lie in
the same ball. But then if k ≥ 1, say b1 ∈ B1; then ordB1 f̃ ≤ −1, contradiction. So k = 0
and f is constant.

Proposition 8.17. Let f be an automorphic form on Ω with constant factors of automor-
phy. Then f has no zeros in F̃ if and only if f has no poles in F̃ .

Proof. It suffices to show that if f has no poles in F̃ , then f has no zeros in F̃ . Given this,
the converse follows by considering 1/f . We split into two cases.

(i) There are no zeros on
g⋃
i=1

Ri ∪
g⋃
i=1

Si. Then:

Claim: ordCif(z) = −ordBif(γi(z)).

Proof of Claim: If |f | is constant on Si, then |f · γi| is constant on Bi. Also, if

g(z) = z − bi
z − ci

,

then ordCig = −1, ordBig ·γi = 1. The general case follows: we can approximate
any such automorphic form by |f | = |g|k|h|, ordBih = 0, by similar methods to
above.

Thus ordBif+ordCif = 0, so there are no zeros in F̃ by Lemma 8.15.

(ii) There are a finite number of zeros in
g⋃
i=1

Ri ∪
g⋃
i=1

Si, say a1, ..., ak. Then pick

b ∈ F\(
g⋃
i=1

Ri ∪
g⋃
i=1

Si).

Now
f̃ = f · θ(b, a1; z) · · · θ(b, ak; z)

is holomorphic on F̃ , hence on Ω (automorphic), with no zeros in
g⋃
i=1

Ri ∪
g⋃
i=1

Si. So by (i),

f̃ has no zeros in F̃ . But it has a zero at b, contradiction. So case (ii) can’t happen.

We’re finally in a position to prove the structure theorem for automorphic forms.

Theorem 8.18 (Structure theorem for automorphic forms). Let f be an automorphic form
on Ω with constant factors of automorphy. Then we can write

f = Cθ(a1, b1; z) · · · θ(ak, bk; z), ai, bi ∈ Ω, C ∈ Cp constant.
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Proof. We have finite sets {a1, ..., am} of zeros and {b1, ..., bn} of poles of f in F . Then
without loss of generality m ≤ n, and we can write

f = f̃ · θ(a1, b1; z) · · · θ(am, bm; z),

f̃ with no zeros in F (hence Ω). But then by Proposition 8.17, f̃ also has no poles in F .

Recall ui(z) = uγi(z). Proposition 8.11 (i) shows that ui has no zeros or poles in Ω. In
the proof, we showed that

ui(z) = z − γ−1
i (a)

z − γi(a)
∏

φ 6=id,γ−1
i

z − φ(a)
z − φ(γi(a)) .

Now φ(a), φγi(a) lie in the same Bi, so | z−φ(a)
z−φ(γi(a)) | = 1 for all φ ∈ Γ\{id, γ−1

i } by Lemma
8.1. It follows that

ordBjui =
{

1 : i = j
0 : i 6= j

, ordCjui =
{
−1 : i = j
0 : i 6= j

.

Set nj = ordBi f̃ . Then if g = un1
1 · · ·u

ng
g , then ordBi f̃/g = 0 for all i, so Corollary 8.16

implies that |f̃/g| is constant on F , thus is constant (and hence bounded) on Ω, i.e. f̃/g is
constant on Ω.

Thus
f = Cun1

1 · · ·ungg θ(a1, b1; z) · · · θ(am, bm; z)

as required.
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9. The Curve Ω/Γ
To complete our work, we will use the theory developed so far to prove that Ω/Γ is a
smooth irreducible algebraic curve. Our approach will be similar to Chapter 3, in that
we consider the field of Γ-invariant functions, Cp(Ω/Γ), proving that it has transcendence
degree 1 over Cp. Analogously to before, Ω/Γ is the set of places of Cp(Ω/Γ), and hence
Ω/Γ is isomorphic to a smooth irreducible algebraic curve. We also state another version of
Riemann-Roch that says that this curve has genus g, hence showing that this does indeed
generalise Tate’s work.

In this chapter, we will require some results from analytic geometry; there is not space
here to develop the theory in all but the briefest detail, but there are large parallels with
algebraic geometry. Indeed, an analytic set is locally the zero set of a finite number of
holomorphic functions on Cnp . A point P of an analytic set V is regular if V is locally an
analytic manifold at P , in which case we define the dimension at P to be the dimension
of this manifold. We say the dimension of V is the maximum of the dimensions of the
regular points. An analytic function on V is a map ψ : V ⊂ Cnp → Cp that is a product of
holomorphic functions on each component, and an analytic map φ : V → V ′ is a map that
respects analytic functions on V .

The only result we really require from this is that for an analytic map φ : V → V ′, with
dim(V ) > dim(V ′), the non-empty fibres are not discrete (as they have dimension ≥ 1).

9.1. The Field of Γ-invariant Meromorphic Functions
The major step in what follows is proving the existence of one non-constant Γ-invariant
meromorphic function h. Once we’ve done this, we show that Cp(Ω/Γ)/Cp(h) is an alge-
braic extension using linear algebra.

Let Γ = 〈γ1, ..., γg〉 be a Schottky group. Recall that ui(z) = uγi(z) (Definition 8.12).
Define, for r > g,

φr : Ωr −→ Ωg,

(z1, ..., zr) 7→ (u1(z1) · · ·u1(zr), ..., ug(z1) · · ·ug(zr)).

This is an analytic map, and since r > g, the fibres are non-discrete. Thus, for (z1, ..., zr) ∈
Ωr, there is some (w1, ..., wr) ∈ Ωr with

(i) w1 /∈
r⋃
j=1

Γ(zj), and

(ii) φr(z1, ..., zr) = φr(w1, ..., wr).

Note by (i) that the wi are not just a re-arrangement of the zi. Condition (ii) says that

u1(z1) · · ·u1(zr) = u1(w1) · · ·u1(wr), ... ,

ug(z1) · · ·ug(zr) = ug(w1) · · ·ug(wr).

Now consider
f(z) = θ(z1,∞; z) · · · θ(zr,∞; z),

g(z) = θ(w1,∞; z) · · · θ(wr,∞; z).

40



P -adic Uniformisation of Curves Chris Williams

By Proposition 8.13,

f(z) =
r∏
j=1

ui(zj)
ui(∞)f(γi(z)),

g(z) =
r∏
j=1

ui(wj)
ui(∞) g(γi(z)).

Thus f, g are automorphic forms with the same constant of automorphy. In particular,
h ..= f/g is invariant under the action of Γ. But h is non-constant; indeed, because of
condition (i) above, it has a pole at w1.

Theorem 9.1. The field Cp(Ω/Γ) is a function field of one variable over Cp.

Proof. It suffices to prove that Cp(Ω/Γ)/Cp(h) is an algebraic extension, as then

trdegCpCp(Ω/Γ) = 1.

The structure theorem for automorphic forms implies that h has the same number of zeros
as poles in Ω/Γ; call this n. Then we claim that any n+ 1 functions

f1, ..., fn+1 ∈ Cp(Ω/Γ)

are linearly dependent over Cp(h). For each i, write mi for the number of poles of fi in
Ω/Γ, and put

m =
n+1∑
i=1

mi.

Let
αk = ckmh

m + · · ·+ ck1h+ ck0, 1 ≤ k ≤ n+ 1,
a collection of n+ 1 polynomials in h, with the cij indeterminates. Then consider

g = α1f1 + · · ·+ αn+1fn+1.

Now g has poles only at poles of h or fi; thus there at most mn + m = m(n + 1) poles of
g. Now choose (m+ 1)(n+ 1)− 1 distinct points z1, ..., z(m+1)(n+1)−1 ∈ Ω/Γ; then we have
(m+ 1)(n+ 1)− 1 linear equations

g(zi) = 0
in (m+ 1)(n+ 1) unknowns cij , 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ m. Thus there is a solution. But for
such a solution, g has at most m(n+ 1) poles, but at least (m+ 1)(n+ 1)− 1 zeros; and as
n ≥ 1 (by construction of h), the number of zeros is greater than the number of poles. But
this can only happen - by the structure theorem - if g ≡ 0, that is, if we have exhibited a
linear dependence between the fi over Cp(h), as required.

Hence we obtain a smooth irreducible algebraic curve, V , with Cp(Ω/Γ) = C(V ) the func-
tion field of V .

Before completing the proof that Ω/Γ is an algebraic curve, we note some analogues to
the genus 1 case. We can, for f ∈ Cp(Ω/Γ), define a Γ-invariant divisor {mα : α ∈ Ω/Γ},
where mα represents the order of zero or pole at α. The structure theorem says that only
finitely many of the mα are non-zero in Ω/Γ, and that the degree of such a principal divisor
(in the obvious sense) is 0. We can say any collection of integers {mα : α ∈ Ω/Γ}, with this
finiteness condition, is a divisor, and for any divisor d define the vector space

L(d) = {f ∈ Cp(Ω/Γ) : div(f) ≥ −d}

as before. Then we state the following:
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Lemma 9.2. If d is a divisor on Ω/Γ, and deg(d) > 2g − 2, then

dimCpL(d) = deg(d)− g + 1.

Hence the genus of Cp(Ω/Γ) is g, using Riemann-Roch. Now recall we defined A(Cp(Ω/Γ))
to be the set of places of Cp(Ω/Γ), leading to:

Lemma 9.3. There is an isomorphism

Ω/Γ −→ A(Cp(Ω/Γ)) −→ V (Cp),

α 7−→ ordα 7−→ Pα,

where ordα is centred at Pα.

Proof. This is almost completely analogous to the genus 1 case. For surjectivity, we need
to consider - for a point Q ∈ V - a non-constant function f ∈ L(nQ), some n ∈ N, rather
than just L(2Q). Rather than using Schnirelmann’s theorem, we use the structure theorem
for automorphic forms to show existence of a pole of f in Ω/Γ.

We collect our results in the following final theorem:

Theorem 9.4. Let Γ be a Schottky group generated freely by g elements. Let

Ω = P1
Cp\L,

with L the set of limit points of Γ. Then Ω/Γ is a smooth irreducible algebraic curve of
genus g.

Remarks: (i) The genus 1 case is an immediate corollary of this work.

(ii) We call curves of this form Mumford curves. Mumford’s work was considerably more
extensive than the account presented here; he went on to prove that an algebraic
curve is a Mumford curve if and only if it has split degenerate reduction, using rigid
analysis. For details of this, including the proof that Ω/Γ has genus g, see [1], Chapter
III onwards.
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